These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 31655435)
1. Achieving arsenic concentrations of <1 μg/L by Fe(0) electrolysis: The exceptional performance of magnetite. van Genuchten CM; Behrends T; Stipp SLS; Dideriksen K Water Res; 2020 Jan; 168():115170. PubMed ID: 31655435 [TBL] [Abstract][Full Text] [Related]
2. XANES evidence for rapid arsenic(III) oxidation at magnetite and ferrihydrite surfaces by dissolved O(2) via Fe(2+)-mediated reactions. Ona-Nguema G; Morin G; Wang Y; Foster AL; Juillot F; Calas G; Brown GE Environ Sci Technol; 2010 Jul; 44(14):5416-22. PubMed ID: 20666402 [TBL] [Abstract][Full Text] [Related]
3. Emerging investigator series: interdependency of green rust transformation and the partitioning and binding mode of arsenic. van Genuchten CM; Behrends T; Dideriksen K Environ Sci Process Impacts; 2019 Sep; 21(9):1459-1476. PubMed ID: 31353376 [TBL] [Abstract][Full Text] [Related]
4. Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system. Bandaru SRS; Roy A; Gadgil AJ; van Genuchten CM Water Res; 2020 May; 175():115668. PubMed ID: 32163769 [TBL] [Abstract][Full Text] [Related]
5. Groundwater As Removal by As(III), Fe(II), and Mn(II) Co-Oxidation: Contrasting As Removal Pathways with O van Genuchten CM; Ahmad A Environ Sci Technol; 2020 Dec; 54(23):15454-15464. PubMed ID: 33174730 [TBL] [Abstract][Full Text] [Related]
6. Integrating biological As(III) oxidation with Fe(0) electrocoagulation for arsenic removal from groundwater. Roy M; van Genuchten CM; Rietveld L; van Halem D Water Res; 2021 Jan; 188():116531. PubMed ID: 33126004 [TBL] [Abstract][Full Text] [Related]
7. Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide. Shan C; Tong M Water Res; 2013 Jun; 47(10):3411-21. PubMed ID: 23587265 [TBL] [Abstract][Full Text] [Related]
8. Removing arsenic from synthetic groundwater with iron electrocoagulation: an Fe and As K-edge EXAFS study. van Genuchten CM; Addy SE; Peña J; Gadgil AJ Environ Sci Technol; 2012 Jan; 46(2):986-94. PubMed ID: 22132945 [TBL] [Abstract][Full Text] [Related]
9. Production and transformation of mixed-valent nanoparticles generated by Fe(0) electrocoagulation. Dubrawski KL; van Genuchten CM; Delaire C; Amrose SE; Gadgil AJ; Mohseni M Environ Sci Technol; 2015 Feb; 49(4):2171-9. PubMed ID: 25608110 [TBL] [Abstract][Full Text] [Related]
10. Coupled As and Mn Redox Transformations in an Fe(0) Electrocoagulation System: Competition for Reactive Oxidants and Sorption Sites. Catrouillet C; Hirosue S; Manetti N; Boureau V; Peña J Environ Sci Technol; 2020 Jun; 54(12):7165-7174. PubMed ID: 32364715 [TBL] [Abstract][Full Text] [Related]
11. Enhanced Arsenite Removal from Silicate-containing Water by Using Redox Polymer-based Fe(III) Oxides Nanocomposite. Fang Z; Li Z; Zhang X; Pan S; Wu M; Pan B Water Res; 2021 Feb; 189():116673. PubMed ID: 33276212 [TBL] [Abstract][Full Text] [Related]
12. Formation of macroscopic surface layers on Fe(0) electrocoagulation electrodes during an extended field trial of arsenic treatment. van Genuchten CM; Bandaru SR; Surorova E; Amrose SE; Gadgil AJ; Peña J Chemosphere; 2016 Jun; 153():270-9. PubMed ID: 27018519 [TBL] [Abstract][Full Text] [Related]
13. As(III) removal and speciation of Fe (Oxyhydr)oxides during simultaneous oxidation of As(III) and Fe(II). Han X; Song J; Li YL; Jia SY; Wang WH; Huang FG; Wu SH Chemosphere; 2016 Mar; 147():337-44. PubMed ID: 26774297 [TBL] [Abstract][Full Text] [Related]
14. Extended X-ray absorption fine structure analysis of arsenite and arsenate adsorption on maghemite. Morin G; Ona-Nguema G; Wang Y; Menguy N; Juillot F; Proux O; Guyot F; Calas G; Brown GE Environ Sci Technol; 2008 Apr; 42(7):2361-6. PubMed ID: 18504966 [TBL] [Abstract][Full Text] [Related]
15. Respective role of Fe and Mn oxide contents for arsenic sorption in iron and manganese binary oxide: an X-ray absorption spectroscopy investigation. Zhang G; Liu F; Liu H; Qu J; Liu R Environ Sci Technol; 2014 Sep; 48(17):10316-22. PubMed ID: 25093452 [TBL] [Abstract][Full Text] [Related]
16. In-situ production of iron flocculation and reactive oxygen species by electrochemically decomposing siderite: An innovative Fe-EC route to remove trivalent arsenic. Chen M; Hu H; Chen M; Wang C; Wang Q; Zeng C; Shi Q; Song W; Li X; Zhang Q J Hazard Mater; 2023 Jan; 441():129884. PubMed ID: 36084465 [TBL] [Abstract][Full Text] [Related]
17. Removal of Arsenic(III) from water using magnetite precipitated onto Douglas fir biochar. Navarathna CM; Karunanayake AG; Gunatilake SR; Pittman CU; Perez F; Mohan D; Mlsna T J Environ Manage; 2019 Nov; 250():109429. PubMed ID: 31491719 [TBL] [Abstract][Full Text] [Related]
18. Groundwater arsenic removal by coagulation using ferric(III) sulfate and polyferric sulfate: A comparative and mechanistic study. Cui J; Jing C; Che D; Zhang J; Duan S J Environ Sci (China); 2015 Jun; 32():42-53. PubMed ID: 26040730 [TBL] [Abstract][Full Text] [Related]
19. Rapid and Efficient Arsenic Removal by Iron Electrocoagulation Enabled with in Situ Generation of Hydrogen Peroxide. Bandaru SRS; van Genuchten CM; Kumar A; Glade S; Hernandez D; Nahata M; Gadgil A Environ Sci Technol; 2020 May; 54(10):6094-6103. PubMed ID: 32315523 [TBL] [Abstract][Full Text] [Related]
20. Removal of arsenic from synthetic acid mine drainage by electrochemical pH adjustment and coprecipitation with iron hydroxide. Wang JW; Bejan D; Bunce NJ Environ Sci Technol; 2003 Oct; 37(19):4500-6. PubMed ID: 14572107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]