BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31655587)

  • 1. Characterization of Xi-class mycothiol S-transferase from Corynebacterium glutamicum and its protective effects in oxidative stress.
    Si M; Che C; Li G; Li X; Gong Z; Liu J; Yang G; Chen C
    Microb Cell Fact; 2019 Oct; 18(1):182. PubMed ID: 31655587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular mechanisms of Mycoredoxin-1 in resistance to oxidative stress in Corynebacterium glutamicum.
    Li X; Liu Y; Zhong J; Che C; Gong Z; Si M; Yang G
    J Gen Appl Microbiol; 2021 Apr; 67(1):15-23. PubMed ID: 33148889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overexpression of Mycothiol Disulfide Reductase Enhances Corynebacterium glutamicum Robustness by Modulating Cellular Redox Homeostasis and Antioxidant Proteins under Oxidative Stress.
    Si M; Zhao C; Zhang B; Wei D; Chen K; Yang X; Xiao H; Shen X
    Sci Rep; 2016 Jul; 6():29491. PubMed ID: 27383057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Corynebacterium glutamicum mycothiol peroxidase is a reactive oxygen species-scavenging enzyme that shows promiscuity in thiol redox control.
    Pedre B; Van Molle I; Villadangos AF; Wahni K; Vertommen D; Turell L; Erdogan H; Mateos LM; Messens J
    Mol Microbiol; 2015 Jun; 96(6):1176-91. PubMed ID: 25766783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Involvement of a mycothiol-dependent reductase NCgl0018 in oxidative stress response of Corynebacterium glutamicum.
    Chen K; Yu X; Zhang X; Li X; Liu Y; Si M; Su T
    J Gen Appl Microbiol; 2021 Dec; 67(6):225-239. PubMed ID: 34483223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein S-mycothiolation functions as redox-switch and thiol protection mechanism in Corynebacterium glutamicum under hypochlorite stress.
    Chi BK; Busche T; Van Laer K; Bäsell K; Becher D; Clermont L; Seibold GM; Persicke M; Kalinowski J; Messens J; Antelmann H
    Antioxid Redox Signal; 2014 Feb; 20(4):589-605. PubMed ID: 23886307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological roles of mycothiol in detoxification and tolerance to multiple poisonous chemicals in Corynebacterium glutamicum.
    Liu YB; Long MX; Yin YJ; Si MR; Zhang L; Lu ZQ; Wang Y; Shen XH
    Arch Microbiol; 2013 Jun; 195(6):419-29. PubMed ID: 23615850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myo-inositol-1-phosphate synthase (Ino-1) functions as a protection mechanism in Corynebacterium glutamicum under oxidative stress.
    Chen C; Chen K; Su T; Zhang B; Li G; Pan J; Si M
    Microbiologyopen; 2019 May; 8(5):e00721. PubMed ID: 30270521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.
    Si M; Zhang L; Chaudhry MT; Ding W; Xu Y; Chen C; Akbar A; Shen X; Liu SJ
    Appl Environ Microbiol; 2015 Apr; 81(8):2781-96. PubMed ID: 25681179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycothiol protects Corynebacterium glutamicum against acid stress via maintaining intracellular pH homeostasis, scavenging ROS, and S-mycothiolating MetE.
    Liu Y; Yang X; Yin Y; Lin J; Chen C; Pan J; Si M; Shen X
    J Gen Appl Microbiol; 2016 Jul; 62(3):144-53. PubMed ID: 27250661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing Corynebacterium glutamicum robustness by over-expressing a gene, mshA, for mycothiol glycosyltransferase.
    Liu YB; Chen C; Chaudhry MT; Si MR; Zhang L; Wang Y; Shen XH
    Biotechnol Lett; 2014 Jul; 36(7):1453-9. PubMed ID: 24737070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycothiol peroxidase MPx protects Corynebacterium glutamicum against acid stress by scavenging ROS.
    Wang T; Gao F; Kang Y; Zhao C; Su T; Li M; Si M; Shen X
    Biotechnol Lett; 2016 Jul; 38(7):1221-8. PubMed ID: 27053080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenate reductase, mycothiol, and mycoredoxin concert thiol/disulfide exchange.
    Ordóñez E; Van Belle K; Roos G; De Galan S; Letek M; Gil JA; Wyns L; Mateos LM; Messens J
    J Biol Chem; 2009 May; 284(22):15107-16. PubMed ID: 19286650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional characterization of a mycothiol peroxidase in Corynebacterium glutamicum that uses both mycoredoxin and thioredoxin reducing systems in the response to oxidative stress.
    Si M; Xu Y; Wang T; Long M; Ding W; Chen C; Guan X; Liu Y; Wang Y; Shen X; Liu SJ
    Biochem J; 2015 Jul; 469(1):45-57. PubMed ID: 25891483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemistry and Redox Biology of Mycothiol.
    Reyes AM; Pedre B; De Armas MI; Tossounian MA; Radi R; Messens J; Trujillo M
    Antioxid Redox Signal; 2018 Feb; 28(6):487-504. PubMed ID: 28372502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycoredoxin-1 is one of the missing links in the oxidative stress defence mechanism of Mycobacteria.
    Van Laer K; Buts L; Foloppe N; Vertommen D; Van Belle K; Wahni K; Roos G; Nilsson L; Mateos LM; Rawat M; van Nuland NA; Messens J
    Mol Microbiol; 2012 Nov; 86(4):787-804. PubMed ID: 22970802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graded Response of the Multifunctional 2-Cysteine Peroxiredoxin, CgPrx, to Increasing Levels of Hydrogen Peroxide in Corynebacterium glutamicum.
    Si M; Wang T; Pan J; Lin J; Chen C; Wei Y; Lu Z; Wei G; Shen X
    Antioxid Redox Signal; 2017 Jan; 26(1):1-14. PubMed ID: 27324811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel mycothiol-dependent thiol-disulfide reductase in
    Liu Y; Li X; Luo J; Su T; Si M; Chen C
    3 Biotech; 2021 Aug; 11(8):372. PubMed ID: 34290951
    [No Abstract]   [Full Text] [Related]  

  • 19. Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum.
    Tung QN; Loi VV; Busche T; Nerlich A; Mieth M; Milse J; Kalinowski J; Hocke AC; Antelmann H
    Redox Biol; 2019 Jan; 20():514-525. PubMed ID: 30481728
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thiol oxidation-based sensing and regulation mechanism for the OasR-mediated organic peroxide and antibiotic resistance in C. glutamicum.
    Si M; Chen C; Che C; Liu Y; Li X; Su T
    Biochem J; 2020 Oct; 477(19):3709-3727. PubMed ID: 32926092
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.