These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 31655740)

  • 1. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species.
    Rojas-Tapias DF; Helmann JD
    Adv Microb Physiol; 2019; 75():279-323. PubMed ID: 31655740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Amino Acid Residue Requirements of the RNA Polymerase (RNAP) α Subunit C-Terminal Domain for Productive Interaction between Spx and RNAP of Bacillus subtilis.
    Birch CA; Davis MJ; Mbengi L; Zuber P
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484046
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of Novel Spx Regulatory Pathways in Bacillus subtilis Uncovers a Close Relationship between the CtsR and Spx Regulons.
    Rojas-Tapias DF; Helmann JD
    J Bacteriol; 2019 Jul; 201(13):. PubMed ID: 30962353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of transcription initiation by Spx: formation of transcription complex and identification of a Cis-acting element required for transcriptional activation.
    Reyes DY; Zuber P
    Mol Microbiol; 2008 Aug; 69(3):765-79. PubMed ID: 18687074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of the Spx regulon by cell wall stress reveals novel regulatory mechanisms in Bacillus subtilis.
    Rojas-Tapias DF; Helmann JD
    Mol Microbiol; 2018 Mar; 107(5):659-674. PubMed ID: 29271514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of
    Kobayashi K
    J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30718304
    [No Abstract]   [Full Text] [Related]  

  • 7. Mutational analysis of the Bacillus subtilis RNA polymerase alpha C-terminal domain supports the interference model of Spx-dependent repression.
    Zhang Y; Nakano S; Choi SY; Zuber P
    J Bacteriol; 2006 Jun; 188(12):4300-11. PubMed ID: 16740936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spx, a versatile regulator of the Bacillus subtilis stress response.
    Schäfer H; Turgay K
    Curr Genet; 2019 Aug; 65(4):871-876. PubMed ID: 30830258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase.
    Newberry KJ; Nakano S; Zuber P; Brennan RG
    Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15839-44. PubMed ID: 16249335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunit.
    Nakano MM; Lin A; Zuber CS; Newberry KJ; Brennan RG; Zuber P
    PLoS One; 2010 Jan; 5(1):e8664. PubMed ID: 20084284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of genes directly regulated by the pleiotropic transcription factor Spx in Bacillus subtilis.
    Rochat T; Nicolas P; Delumeau O; Rabatinová A; Korelusová J; Leduc A; Bessières P; Dervyn E; Krásny L; Noirot P
    Nucleic Acids Res; 2012 Oct; 40(19):9571-83. PubMed ID: 22904090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription from the P3 promoter of the Bacillus subtilis spx gene is induced in response to disulfide stress.
    Leelakriangsak M; Zuber P
    J Bacteriol; 2007 Mar; 189(5):1727-35. PubMed ID: 17158663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry.
    Al-Eryani Y; Ib Rasmussen M; Kjellström S; Højrup P; Emanuelsson C; von Wachenfeldt C
    Proteins; 2016 Sep; 84(9):1234-45. PubMed ID: 27191337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that a single monomer of Spx can productively interact with RNA polymerase in Bacillus subtilis.
    Lin AA; Zuber P
    J Bacteriol; 2012 Apr; 194(7):1697-707. PubMed ID: 22307755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB.
    Rojas-Tapias DF; Helmann JD
    PLoS Genet; 2018 Jul; 14(7):e1007531. PubMed ID: 30001325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residue substitutions near the redox center of Bacillus subtilis Spx affect RNA polymerase interaction, redox control, and Spx-DNA contact at a conserved cis-acting element.
    Lin AA; Walthers D; Zuber P
    J Bacteriol; 2013 Sep; 195(17):3967-78. PubMed ID: 23813734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of transcription activation by the global regulator Spx.
    Shi J; Li F; Wen A; Yu L; Wang L; Wang F; Jin Y; Jin S; Feng Y; Lin W
    Nucleic Acids Res; 2021 Oct; 49(18):10756-10769. PubMed ID: 34530448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual negative control of spx transcription initiation from the P3 promoter by repressors PerR and YodB in Bacillus subtilis.
    Leelakriangsak M; Kobayashi K; Zuber P
    J Bacteriol; 2007 Mar; 189(5):1736-44. PubMed ID: 17158660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction.
    Nakano MM; Nakano S; Zuber P
    Mol Microbiol; 2002 Jun; 44(5):1341-9. PubMed ID: 12028382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. YjbH-enhanced proteolysis of Spx by ClpXP in Bacillus subtilis is inhibited by the small protein YirB (YuzO).
    Kommineni S; Garg SK; Chan CM; Zuber P
    J Bacteriol; 2011 May; 193(9):2133-40. PubMed ID: 21378193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.