BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31655740)

  • 1. Roles and regulation of Spx family transcription factors in Bacillus subtilis and related species.
    Rojas-Tapias DF; Helmann JD
    Adv Microb Physiol; 2019; 75():279-323. PubMed ID: 31655740
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the Amino Acid Residue Requirements of the RNA Polymerase (RNAP) α Subunit C-Terminal Domain for Productive Interaction between Spx and RNAP of Bacillus subtilis.
    Birch CA; Davis MJ; Mbengi L; Zuber P
    J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484046
    [No Abstract]   [Full Text] [Related]  

  • 3. Identification of Novel Spx Regulatory Pathways in Bacillus subtilis Uncovers a Close Relationship between the CtsR and Spx Regulons.
    Rojas-Tapias DF; Helmann JD
    J Bacteriol; 2019 Jul; 201(13):. PubMed ID: 30962353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of transcription initiation by Spx: formation of transcription complex and identification of a Cis-acting element required for transcriptional activation.
    Reyes DY; Zuber P
    Mol Microbiol; 2008 Aug; 69(3):765-79. PubMed ID: 18687074
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of the Spx regulon by cell wall stress reveals novel regulatory mechanisms in Bacillus subtilis.
    Rojas-Tapias DF; Helmann JD
    Mol Microbiol; 2018 Mar; 107(5):659-674. PubMed ID: 29271514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inactivation of
    Kobayashi K
    J Bacteriol; 2019 Apr; 201(8):. PubMed ID: 30718304
    [No Abstract]   [Full Text] [Related]  

  • 7. Mutational analysis of the Bacillus subtilis RNA polymerase alpha C-terminal domain supports the interference model of Spx-dependent repression.
    Zhang Y; Nakano S; Choi SY; Zuber P
    J Bacteriol; 2006 Jun; 188(12):4300-11. PubMed ID: 16740936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spx, a versatile regulator of the Bacillus subtilis stress response.
    Schäfer H; Turgay K
    Curr Genet; 2019 Aug; 65(4):871-876. PubMed ID: 30830258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of the Bacillus subtilis anti-alpha, global transcriptional regulator, Spx, in complex with the alpha C-terminal domain of RNA polymerase.
    Newberry KJ; Nakano S; Zuber P; Brennan RG
    Proc Natl Acad Sci U S A; 2005 Nov; 102(44):15839-44. PubMed ID: 16249335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promoter recognition by a complex of Spx and the C-terminal domain of the RNA polymerase alpha subunit.
    Nakano MM; Lin A; Zuber CS; Newberry KJ; Brennan RG; Zuber P
    PLoS One; 2010 Jan; 5(1):e8664. PubMed ID: 20084284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide identification of genes directly regulated by the pleiotropic transcription factor Spx in Bacillus subtilis.
    Rochat T; Nicolas P; Delumeau O; Rabatinová A; Korelusová J; Leduc A; Bessières P; Dervyn E; Krásny L; Noirot P
    Nucleic Acids Res; 2012 Oct; 40(19):9571-83. PubMed ID: 22904090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcription from the P3 promoter of the Bacillus subtilis spx gene is induced in response to disulfide stress.
    Leelakriangsak M; Zuber P
    J Bacteriol; 2007 Mar; 189(5):1727-35. PubMed ID: 17158663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring structure and interactions of the bacterial adaptor protein YjbH by crosslinking mass spectrometry.
    Al-Eryani Y; Ib Rasmussen M; Kjellström S; Højrup P; Emanuelsson C; von Wachenfeldt C
    Proteins; 2016 Sep; 84(9):1234-45. PubMed ID: 27191337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence that a single monomer of Spx can productively interact with RNA polymerase in Bacillus subtilis.
    Lin AA; Zuber P
    J Bacteriol; 2012 Apr; 194(7):1697-707. PubMed ID: 22307755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of Bacillus subtilis Spx under cell wall stress requires the anti-adaptor protein YirB.
    Rojas-Tapias DF; Helmann JD
    PLoS Genet; 2018 Jul; 14(7):e1007531. PubMed ID: 30001325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Residue substitutions near the redox center of Bacillus subtilis Spx affect RNA polymerase interaction, redox control, and Spx-DNA contact at a conserved cis-acting element.
    Lin AA; Walthers D; Zuber P
    J Bacteriol; 2013 Sep; 195(17):3967-78. PubMed ID: 23813734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis of transcription activation by the global regulator Spx.
    Shi J; Li F; Wen A; Yu L; Wang L; Wang F; Jin Y; Jin S; Feng Y; Lin W
    Nucleic Acids Res; 2021 Oct; 49(18):10756-10769. PubMed ID: 34530448
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual negative control of spx transcription initiation from the P3 promoter by repressors PerR and YodB in Bacillus subtilis.
    Leelakriangsak M; Kobayashi K; Zuber P
    J Bacteriol; 2007 Mar; 189(5):1736-44. PubMed ID: 17158660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spx (YjbD), a negative effector of competence in Bacillus subtilis, enhances ClpC-MecA-ComK interaction.
    Nakano MM; Nakano S; Zuber P
    Mol Microbiol; 2002 Jun; 44(5):1341-9. PubMed ID: 12028382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. YjbH-enhanced proteolysis of Spx by ClpXP in Bacillus subtilis is inhibited by the small protein YirB (YuzO).
    Kommineni S; Garg SK; Chan CM; Zuber P
    J Bacteriol; 2011 May; 193(9):2133-40. PubMed ID: 21378193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.