These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31655877)

  • 1. An almost periodic Ross-Macdonald model with structured vector population in a patchy environment.
    Wang BG; Qiang L; Wang ZC
    J Math Biol; 2020 Feb; 80(3):835-863. PubMed ID: 31655877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A climate-based malaria model with the use of bed nets.
    Wang X; Zhao XQ
    J Math Biol; 2018 Jul; 77(1):1-25. PubMed ID: 28965238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A reaction-diffusion malaria model with seasonality and incubation period.
    Bai Z; Peng R; Zhao XQ
    J Math Biol; 2018 Jul; 77(1):201-228. PubMed ID: 29188365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Malaria Transmission Model with Temperature-Dependent Incubation Period.
    Wang X; Zhao XQ
    Bull Math Biol; 2017 May; 79(5):1155-1182. PubMed ID: 28389985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A PERIODIC ROSS-MACDONALD MODEL IN A PATCHY ENVIRONMENT.
    Gao D; Lou Y; Ruan S
    Discrete Continuous Dyn Syst Ser B; 2014 Dec; 19(10):3133-3145. PubMed ID: 25473381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mathematical model of malaria transmission in a periodic environment.
    Bakary T; Boureima S; Sado T
    J Biol Dyn; 2018 Dec; 12(1):400-432. PubMed ID: 29730976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of a two-strain malaria transmission model with spatial heterogeneity and vector-bias.
    Shi Y; Zhao H
    J Math Biol; 2021 Mar; 82(4):24. PubMed ID: 33649976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical Analysis of the Ross-Macdonald Model with Quarantine.
    Jin X; Jin S; Gao D
    Bull Math Biol; 2020 Apr; 82(4):47. PubMed ID: 32242279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the Potential Role of Engineered Symbiotic Bacteria in Malaria Control.
    Wang X; Zou X
    Bull Math Biol; 2019 Jul; 81(7):2569-2595. PubMed ID: 31161557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A periodic SEIRS epidemic model with a time-dependent latent period.
    Li F; Zhao XQ
    J Math Biol; 2019 Apr; 78(5):1553-1579. PubMed ID: 30607509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Threshold Infection Level for [Formula: see text] Invasion in a Two-Sex Mosquito Population Model.
    Li D; Wan H
    Bull Math Biol; 2019 Jul; 81(7):2596-2624. PubMed ID: 31161558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Parasite sources and sinks in a patched Ross-Macdonald malaria model with human and mosquito movement: Implications for control.
    Ruktanonchai NW; Smith DL; De Leenheer P
    Math Biosci; 2016 Sep; 279():90-101. PubMed ID: 27436636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Malaria Control Measures' Effectiveness Using Multistage Vector Model.
    Kamgang JC; Thron CP
    Bull Math Biol; 2019 Nov; 81(11):4366-4411. PubMed ID: 31286347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On a reproductive stage-structured model for the population dynamics of the malaria vector.
    Ngwa GA; Wankah TT; Fomboh-Nforba MY; Ngonghala CN; Teboh-Ewungkem MI
    Bull Math Biol; 2014 Oct; 76(10):2476-516. PubMed ID: 25234336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Seasonal malaria vector and transmission dynamics in western Burkina Faso.
    Epopa PS; Collins CM; North A; Millogo AA; Benedict MQ; Tripet F; Diabate A
    Malar J; 2019 Apr; 18(1):113. PubMed ID: 30940141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Ross-Macdonald model in a patchy environment.
    Auger P; Kouokam E; Sallet G; Tchuente M; Tsanou B
    Math Biosci; 2008 Dec; 216(2):123-31. PubMed ID: 18805432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmission dynamics for vector-borne diseases in a patchy environment.
    Xiao Y; Zou X
    J Math Biol; 2014 Jul; 69(1):113-46. PubMed ID: 23732558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold dynamics of an almost periodic vector-borne disease model.
    Zhang T; Zhao XQ
    J Math Biol; 2023 Oct; 87(5):72. PubMed ID: 37848568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Weather-driven malaria transmission model with gonotrophic and sporogonic cycles.
    Okuneye K; Eikenberry SE; Gumel AB
    J Biol Dyn; 2019; 13(sup1):288-324. PubMed ID: 30691351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vector-Borne Disease Models with Active and Inactive Vectors: A Simple Way to Consider Biting Behavior.
    Simoy MI; Aparicio JP
    Bull Math Biol; 2021 Dec; 84(1):22. PubMed ID: 34940929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.