These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31655943)

  • 1. Fully automated convolutional neural network-based affine algorithm improves liver registration and lesion co-localization on hepatobiliary phase T1-weighted MR images.
    Hasenstab KA; Cunha GM; Higaki A; Ichikawa S; Wang K; Delgado T; Brunsing RL; Schlein A; Bittencourt LK; Schwartzman A; Fowler KJ; Hsiao A; Sirlin CB
    Eur Radiol Exp; 2019 Oct; 3(1):43. PubMed ID: 31655943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional neural network-automated hepatobiliary phase adequacy evaluation may optimize examination time.
    Cunha GM; Hasenstab KA; Higaki A; Wang K; Delgado T; Brunsing RL; Schlein A; Schwartzman A; Hsiao A; Sirlin CB; Fowler KJ
    Eur J Radiol; 2020 Mar; 124():108837. PubMed ID: 31958630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of respiratory motion artifacts in gadoxetate-enhanced MR with a deep learning-based filter using convolutional neural network.
    Kromrey ML; Tamada D; Johno H; Funayama S; Nagata N; Ichikawa S; Kühn JP; Onishi H; Motosugi U
    Eur Radiol; 2020 Nov; 30(11):5923-5932. PubMed ID: 32556463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 3D Deep Neural Network for Liver Volumetry in 3T Contrast-Enhanced MRI.
    Winther H; Hundt C; Ringe KI; Wacker FK; Schmidt B; Jürgens J; Haimerl M; Beyer LP; Stroszczynski C; Wiggermann P; Verloh N
    Rofo; 2021 Mar; 193(3):305-314. PubMed ID: 32882724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of fully automated myocardial segmentation techniques in native and contrast-enhanced T1-mapping cardiovascular magnetic resonance images using fully convolutional neural networks.
    Farrag NA; Lochbihler A; White JA; Ukwatta E
    Med Phys; 2021 Jan; 48(1):215-226. PubMed ID: 33131085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images.
    Weon C; Hyun Nam W; Lee D; Lee JY; Ra JB
    Med Phys; 2015 Jan; 42(1):335-47. PubMed ID: 25563273
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated MR Image Prescription of the Liver Using Deep Learning: Development, Evaluation, and Prospective Implementation.
    Geng R; Buelo CJ; Sundaresan M; Starekova J; Panagiotopoulos N; Oechtering TH; Lawrence EM; Ignaciuk M; Reeder SB; Hernando D
    J Magn Reson Imaging; 2023 Aug; 58(2):429-441. PubMed ID: 36583550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compressed Sensing and Parallel Imaging for Double Hepatic Arterial Phase Acquisition in Gadoxetate-Enhanced Dynamic Liver Magnetic Resonance Imaging.
    Yoon JK; Kim MJ; Lee S
    Invest Radiol; 2019 Jun; 54(6):374-382. PubMed ID: 30724814
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated registration of multispectral MR vessel wall images of the carotid artery.
    van 't Klooster R; Staring M; Klein S; Kwee RM; Kooi ME; Reiber JH; Lelieveldt BP; van der Geest RJ
    Med Phys; 2013 Dec; 40(12):121904. PubMed ID: 24320515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CAIPIRINHA-Dixon-TWIST (CDT)-VIBE MR imaging of the liver at 3.0T with gadoxetate disodium: a solution for transient arterial-phase respiratory motion-related artifacts?
    Gruber L; Rainer V; Plaikner M; Kremser C; Jaschke W; Henninger B
    Eur Radiol; 2018 May; 28(5):2013-2021. PubMed ID: 29264636
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated CNN-Based Analysis Versus Manual Analysis for MR Elastography in Nonalcoholic Fatty Liver Disease: Intermethod Agreement and Fibrosis Stage Discriminative Performance.
    Cunha GM; Delgado TI; Middleton MS; Liew S; Henderson WC; Batakis D; Wang K; Loomba R; Huss RS; Myers RP; Sirlin CB; Fowler KJ; Hasenstab KA
    AJR Am J Roentgenol; 2022 Aug; 219(2):224-232. PubMed ID: 35107306
    [No Abstract]   [Full Text] [Related]  

  • 12. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated separation of diffusely abnormal white matter from focal white matter lesions on MRI in multiple sclerosis.
    Maranzano J; Dadar M; Zhernovaia M; Arnold DL; Collins DL; Narayanan S
    Neuroimage; 2020 Jun; 213():116690. PubMed ID: 32119987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning-based affine medical image registration for multimodal minimal-invasive image-guided interventions - A comparative study on generalizability.
    Strittmatter A; Schad LR; Zöllner FG
    Z Med Phys; 2024 May; 34(2):291-317. PubMed ID: 37355435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Infratentorial lesions in multiple sclerosis patients: intra- and inter-rater variability in comparison to a fully automated segmentation using 3D convolutional neural networks.
    Krüger J; Ostwaldt AC; Spies L; Geisler B; Schlaefer A; Kitzler HH; Schippling S; Opfer R
    Eur Radiol; 2022 Apr; 32(4):2798-2809. PubMed ID: 34643779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Magnetic Resonance (MR) Biomarkers for Assessment of Response With Response Evaluation Criteria in Solid Tumors: Comparison of the Measurements of Neuroendocrine Tumor Liver Metastases (NETLM) With Various MR Sequences and at Multiple Phases of Contrast Administration.
    Luersen GF; Wei W; Tamm EP; Bhosale PR; Szklaruk J
    J Comput Assist Tomogr; 2016; 40(5):717-22. PubMed ID: 27636124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Convolutional neural networks for skull-stripping in brain MR imaging using silver standard masks.
    Lucena O; Souza R; Rittner L; Frayne R; Lotufo R
    Artif Intell Med; 2019 Jul; 98():48-58. PubMed ID: 31521252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic MRI-based Three-dimensional Models of Hip Cartilage Provide Improved Morphologic and Biochemical Analysis.
    Schmaranzer F; Helfenstein R; Zeng G; Lerch TD; Novais EN; Wylie JD; Kim YJ; Siebenrock KA; Tannast M; Zheng G
    Clin Orthop Relat Res; 2019 May; 477(5):1036-1052. PubMed ID: 30998632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised End-to-End Brain Tumor Magnetic Resonance Image Registration Using RBCNN: Rigid Transformation, B-Spline Transformation and Convolutional Neural Network.
    Sankareswaran SP; Krishnan M
    Curr Med Imaging; 2022; 18(4):387-397. PubMed ID: 34365954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.