These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 31656145)
1. Anti-phase collective synchronization with intrinsic in-phase coupling of two groups of electrochemical oscillators. Sebek M; Kawamura Y; Nott AM; Kiss IZ Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2160):20190095. PubMed ID: 31656145 [TBL] [Abstract][Full Text] [Related]
2. Synchronization in populations of electrochemical bursting oscillators with chaotic slow dynamics. Magrini LA; Oliveira Domingues M; Macau EEN; Kiss IZ Chaos; 2021 May; 31(5):053125. PubMed ID: 34240953 [TBL] [Abstract][Full Text] [Related]
3. Synchronization of electrochemical oscillators with differential coupling. Wickramasinghe M; Kiss IZ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062911. PubMed ID: 24483535 [TBL] [Abstract][Full Text] [Related]
4. Dynamics of electrochemical oscillators with electrode size disparity: asymmetrical coupling and anomalous phase synchronization. Wickramasinghe M; Mrugacz EM; Kiss IZ Phys Chem Chem Phys; 2011 Sep; 13(34):15483-91. PubMed ID: 21808800 [TBL] [Abstract][Full Text] [Related]
5. Phase synchronization between collective rhythms of globally coupled oscillator groups: noiseless nonidentical case. Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y Chaos; 2010 Dec; 20(4):043110. PubMed ID: 21198080 [TBL] [Abstract][Full Text] [Related]
6. Noise enhanced phase synchronization and coherence resonance in sets of chaotic oscillators with weak global coupling. Kiss IZ; Zhai Y; Hudson JL; Zhou C; Kurths J Chaos; 2003 Mar; 13(1):267-78. PubMed ID: 12675433 [TBL] [Abstract][Full Text] [Related]
7. Phase synchronization of three locally coupled chaotic electrochemical oscillators: enhanced phase diffusion and identification of indirect coupling. Wickramasinghe M; Kiss IZ Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jan; 83(1 Pt 2):016210. PubMed ID: 21405763 [TBL] [Abstract][Full Text] [Related]
8. Optimization of noise-induced synchronization of oscillator networks. Kawamura Y; Nakao H Phys Rev E; 2016 Sep; 94(3-1):032201. PubMed ID: 27739705 [TBL] [Abstract][Full Text] [Related]
9. Synchronization of three electrochemical oscillators: From local to global coupling. Liu Y; Sebek M; Mori F; Kiss IZ Chaos; 2018 Apr; 28(4):045104. PubMed ID: 31906643 [TBL] [Abstract][Full Text] [Related]
10. Synchronization transitions caused by time-varying coupling functions. Hagos Z; Stankovski T; Newman J; Pereira T; McClintock PVE; Stefanovska A Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2160):20190275. PubMed ID: 31656137 [TBL] [Abstract][Full Text] [Related]
11. Spatially organized dynamical states in chemical oscillator networks: synchronization, dynamical differentiation, and chimera patterns. Wickramasinghe M; Kiss IZ PLoS One; 2013; 8(11):e80586. PubMed ID: 24260429 [TBL] [Abstract][Full Text] [Related]
12. Phase synchronization between collective rhythms of fully locked oscillator groups. Kawamura Y Sci Rep; 2014 Apr; 4():4832. PubMed ID: 24776525 [TBL] [Abstract][Full Text] [Related]
14. Synchronization dynamics of mobile oscillators in the presence of coupling delays. Petrungaro G; Uriu K; Morelli LG Phys Rev E; 2019 Jun; 99(6-1):062207. PubMed ID: 31330742 [TBL] [Abstract][Full Text] [Related]
15. Phase synchronization between collective rhythms of globally coupled oscillator groups: noisy identical case. Kawamura Y; Nakao H; Arai K; Kori H; Kuramoto Y Chaos; 2010 Dec; 20(4):043109. PubMed ID: 21198079 [TBL] [Abstract][Full Text] [Related]
16. On the concept of dynamical reduction: the case of coupled oscillators. Kuramoto Y; Nakao H Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2160):20190041. PubMed ID: 31656146 [TBL] [Abstract][Full Text] [Related]
17. Collective dynamics of chaotic chemical oscillators and the law of large numbers. Kiss IZ; Zhai Y; Hudson JL Phys Rev Lett; 2002 Jun; 88(23):238301. PubMed ID: 12059402 [TBL] [Abstract][Full Text] [Related]
18. Nonlinear phase coupling functions: a numerical study. Rosenblum M; Pikovsky A Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2160):20190093. PubMed ID: 31656143 [TBL] [Abstract][Full Text] [Related]
19. Cross-frequency synchronization of oscillators with time-delayed coupling. Klinshov VV; Shchapin DS; Nekorkin VI Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042923. PubMed ID: 25375583 [TBL] [Abstract][Full Text] [Related]
20. Synchronization scenarios induced by delayed communication in arrays of diffusively coupled autonomous chemical oscillators. Budroni MA; Pagano G; Conte D; Paternoster B; D'ambrosio R; Ristori S; Abou-Hassan A; Rossi F Phys Chem Chem Phys; 2021 Aug; 23(32):17606-17615. PubMed ID: 34369507 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]