These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 31656393)
1. Modeling and Planning with Macro-Actions in Decentralized POMDPs. Amato C; Konidaris G; Kaelbling LP; How JP J Artif Intell Res; 2019; 64():817-859. PubMed ID: 31656393 [TBL] [Abstract][Full Text] [Related]
2. Reinforcement Learning with Limited Reinforcement: Using Bayes Risk for Active Learning in POMDPs. Doshi F; Pineau J; Roy N Proc Int Conf Mach Learn; 2008; 301():256-263. PubMed ID: 20467572 [TBL] [Abstract][Full Text] [Related]
3. Decentralized Opportunistic Spectrum Resources Access Model and Algorithm toward Cooperative Ad-Hoc Networks. Liu M; Xu Y; Mohammed AW PLoS One; 2016; 11(1):e0145526. PubMed ID: 26727504 [TBL] [Abstract][Full Text] [Related]
4. Online Planning Algorithms for POMDPs. Ross S; Pineau J; Paquet S; Chaib-Draa B J Artif Intell Res; 2008 Jul; 32(2):663-704. PubMed ID: 19777080 [TBL] [Abstract][Full Text] [Related]
5. Task-based decomposition of factored POMDPs. Shani G IEEE Trans Cybern; 2014 Feb; 44(2):208-16. PubMed ID: 23757544 [TBL] [Abstract][Full Text] [Related]
6. Forward and Backward Bellman Equations Improve the Efficiency of the EM Algorithm for DEC-POMDP. Tottori T; Kobayashi TJ Entropy (Basel); 2021 Apr; 23(5):. PubMed ID: 33947054 [TBL] [Abstract][Full Text] [Related]
7. Learning State-Variable Relationships in POMCP: A Framework for Mobile Robots. Zuccotto M; Piccinelli M; Castellini A; Marchesini E; Farinelli A Front Robot AI; 2022; 9():819107. PubMed ID: 35928541 [TBL] [Abstract][Full Text] [Related]
8. Partial observability and management of ecological systems. Williams BK; Brown ED Ecol Evol; 2022 Sep; 12(9):e9197. PubMed ID: 36172296 [TBL] [Abstract][Full Text] [Related]
9. Active Inference and Reinforcement Learning: A Unified Inference on Continuous State and Action Spaces Under Partial Observability. Malekzadeh P; Plataniotis KN Neural Comput; 2024 Sep; 36(10):2073-2135. PubMed ID: 39177966 [TBL] [Abstract][Full Text] [Related]
10. An algorithm to create model file for Partially Observable Markov Decision Process for mobile robot path planning. Deshpande SV; Harikrishnan R; Sampe J; Patwa A MethodsX; 2024 Jun; 12():102552. PubMed ID: 38299041 [TBL] [Abstract][Full Text] [Related]
11. Planning treatment of ischemic heart disease with partially observable Markov decision processes. Hauskrecht M; Fraser H Artif Intell Med; 2000 Mar; 18(3):221-44. PubMed ID: 10675716 [TBL] [Abstract][Full Text] [Related]
12. Addressing structural and observational uncertainty in resource management. Fackler P; Pacifici K J Environ Manage; 2014 Jan; 133():27-36. PubMed ID: 24355689 [TBL] [Abstract][Full Text] [Related]
13. Intelligent Knowledge Distribution: Constrained-Action POMDPs for Resource-Aware Multiagent Communication. Fowler MC; Clancy TC; Williams RK IEEE Trans Cybern; 2022 Apr; 52(4):2004-2017. PubMed ID: 32780707 [TBL] [Abstract][Full Text] [Related]
15. Modeling treatment of ischemic heart disease with partially observable Markov decision processes. Hauskrecht M; Fraser H Proc AMIA Symp; 1998; ():538-42. PubMed ID: 9929277 [TBL] [Abstract][Full Text] [Related]
16. Learning Dynamics and Control of a Stochastic System under Limited Sensing Capabilities. Zadenoori MA; Vicario E Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746272 [TBL] [Abstract][Full Text] [Related]
17. Sorting Objects from a Conveyor Belt Using POMDPs with Multiple-Object Observations and Information-Gain Rewards. Mezei AD; Tamás L; Buşoniu L Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32349393 [TBL] [Abstract][Full Text] [Related]
18. From data to optimal decision making: a data-driven, probabilistic machine learning approach to decision support for patients with sepsis. Tsoukalas A; Albertson T; Tagkopoulos I JMIR Med Inform; 2015 Feb; 3(1):e11. PubMed ID: 25710907 [TBL] [Abstract][Full Text] [Related]
19. Coordination as inference in multi-agent reinforcement learning. Li Z; Wu L; Su K; Wu W; Jing Y; Wu T; Duan W; Yue X; Tong X; Han Y Neural Netw; 2024 Apr; 172():106101. PubMed ID: 38232426 [TBL] [Abstract][Full Text] [Related]
20. Generating Reward Functions Using IRL Towards Individualized Cancer Screening. Petousis P; Han SX; Hsu W; Bui AAT Artif Intell Health (2018); 2019; 11326():213-227. PubMed ID: 31363717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]