These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 3165676)
1. The differential functional stability of various forms of bovine liver rhodanese. Aird BA; Horowitz PM Biochim Biophys Acta; 1988 Aug; 956(1):30-8. PubMed ID: 3165676 [TBL] [Abstract][Full Text] [Related]
2. Chemical modification of bovine liver rhodanese with tetrathionate: differential effects on the sulfur-free and sulfur-containing catalytic intermediates. Prasad AR; Horowitz PM Biochim Biophys Acta; 1987 Jan; 911(1):102-8. PubMed ID: 3466649 [TBL] [Abstract][Full Text] [Related]
3. The use of intrinsic protein fluorescence to quantitate enzyme-bound persulfide and to measure equilibria between intermediates in rhodanese catalysis. Horowitz P; Criscimagna NL J Biol Chem; 1983 Jul; 258(13):7894-6. PubMed ID: 6575013 [TBL] [Abstract][Full Text] [Related]
4. Reaction of rhodanese with dithiothreitol. Pecci L; Pensa B; Costa M; Cignini PL; Cannella C Biochim Biophys Acta; 1976 Aug; 445(1):104-11. PubMed ID: 986188 [TBL] [Abstract][Full Text] [Related]
5. Differences in the binding of sulfate, selenate and thiosulfate ions to bovine liver rhodanese, and a description of a binding site for ammonium and sodium ions. An X-ray diffraction study. Lijk LJ; Torfs CA; Kalk KH; De Maeyer MC; Hol WG Eur J Biochem; 1984 Jul; 142(2):399-408. PubMed ID: 6589161 [TBL] [Abstract][Full Text] [Related]
6. The specificity of active-site alkylation by iodoacetic acid in the enzyme thiosulfate sulfurtransferase. Horowitz P; Criscimagna NL Biochim Biophys Acta; 1982 Apr; 702(2):173-7. PubMed ID: 6952939 [TBL] [Abstract][Full Text] [Related]
8. Cyanylation of rhodanese by 2-nitro-5-thiocyanobenzoic acid. Pecci L; Cannella C; Pensa B; Costa M; Cavallini D Biochim Biophys Acta; 1980 Jun; 623(2):348-53. PubMed ID: 6930978 [TBL] [Abstract][Full Text] [Related]
9. Histochemical localization of rhodanese activity in rat liver and skeletal muscle. Devlin DJ; Mills JW; Smith RP Toxicol Appl Pharmacol; 1989 Feb; 97(2):247-55. PubMed ID: 2922757 [TBL] [Abstract][Full Text] [Related]
10. A fluorescence study of conformational changes induced by substrate and temperature in bovine liver thiosulfate sulfurtransferase. Wasylewski Z; Horowitz PM Biochim Biophys Acta; 1982 Feb; 701(1):12-8. PubMed ID: 6948580 [TBL] [Abstract][Full Text] [Related]
15. The crystal structure of a sulfurtransferase from Azotobacter vinelandii highlights the evolutionary relationship between the rhodanese and phosphatase enzyme families. Bordo D; Deriu D; Colnaghi R; Carpen A; Pagani S; Bolognesi M J Mol Biol; 2000 May; 298(4):691-704. PubMed ID: 10788330 [TBL] [Abstract][Full Text] [Related]
17. In vivo studies on rhodanese encapsulation in mouse carrier erythrocytes. Leung P; Cannon EP; Petrikovics I; Hawkins A; Way JL Toxicol Appl Pharmacol; 1991 Sep; 110(2):268-74. PubMed ID: 1891774 [TBL] [Abstract][Full Text] [Related]
18. Reversible interconversion between sulfo and desulfo xanthine oxidase in a system containing rhodanese, thiosulfate, and sulfhydryl reagent. Nishino T; Usami C; Tsushima K Proc Natl Acad Sci U S A; 1983 Apr; 80(7):1826-9. PubMed ID: 6572944 [TBL] [Abstract][Full Text] [Related]
19. Interaction of rhodanese with mitochondrial NADH dehydrogenase. Pagani S; Galante YM Biochim Biophys Acta; 1983 Jan; 742(2):278-84. PubMed ID: 6402020 [TBL] [Abstract][Full Text] [Related]
20. The inactivation of rhodanese by nitrite and inhibition by other anions in vitro. Alexander K; Procell LR; Kirby SD; Baskin SI J Biochem Toxicol; 1989; 4(1):29-33. PubMed ID: 2769694 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]