These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 3165676)
21. Polymorphic Variants of Human Rhodanese Exhibit Differences in Thermal Stability and Sulfur Transfer Kinetics. Libiad M; Sriraman A; Banerjee R J Biol Chem; 2015 Sep; 290(39):23579-88. PubMed ID: 26269602 [TBL] [Abstract][Full Text] [Related]
22. Selective reactivity of rhodanese sulfhydryl groups with 5,5'-dithio-bis(2-nitrobenzoic acid). Pensa B; Costa M; Pecci L; Cannella C; Cavallini D Biochim Biophys Acta; 1977 Oct; 484(2):368-74. PubMed ID: 911854 [TBL] [Abstract][Full Text] [Related]
23. Properties of an Escherichia coli rhodanese. Alexander K; Volini M J Biol Chem; 1987 May; 262(14):6595-604. PubMed ID: 3553189 [TBL] [Abstract][Full Text] [Related]
24. Binding of metal cyanide complexes to bovine liver rhodanese in the crystalline state. Lijk LJ; Kalk KH; Brandenburg NP; Hol WG Biochemistry; 1983 Jun; 22(12):2952-7. PubMed ID: 6575830 [TBL] [Abstract][Full Text] [Related]
25. The structure of bovine liver rhodanese. II. The active site in the sulfur-substituted and the sulfur-free enzyme. Ploegman JH; Drent G; Kalk KH; Hol WG J Mol Biol; 1979 Jan; 127(2):149-62. PubMed ID: 430559 [No Abstract] [Full Text] [Related]
26. Mutagenic analysis of Thr-232 in rhodanese from Azotobacter vinelandii highlighted the differences of this prokaryotic enzyme from the known sulfurtransferases. Pagani S; Forlani F; Carpen A; Bordo D; Colnaghi R FEBS Lett; 2000 Apr; 472(2-3):307-11. PubMed ID: 10788632 [TBL] [Abstract][Full Text] [Related]
27. Antagonism of cyanide intoxication with murine carrier erythrocytes containing bovine rhodanese and sodium thiosulfate. Cannon EP; Leung P; Hawkins A; Petrikovics I; DeLoach J; Way JL J Toxicol Environ Health; 1994 Mar; 41(3):267-74. PubMed ID: 8126749 [TBL] [Abstract][Full Text] [Related]
28. Spectral studies of the tryptophan exposure in the enzyme rhodanese. Guido K; Baillie RD; Horowitz PM Biochim Biophys Acta; 1976 Apr; 427(2):600-7. PubMed ID: 1268221 [TBL] [Abstract][Full Text] [Related]
29. The use of tritium exchange to detect conformational differences between intermediates in catalysis by the enzyme rhodanese. Horowitz P; Falksen K Biochim Biophys Acta; 1983 Sep; 747(1-2):37-41. PubMed ID: 6576809 [TBL] [Abstract][Full Text] [Related]
30. Solution structures and backbone dynamics of Escherichia coli rhodanese PspE in its sulfur-free and persulfide-intermediate forms: implications for the catalytic mechanism of rhodanese. Li H; Yang F; Kang X; Xia B; Jin C Biochemistry; 2008 Apr; 47(15):4377-85. PubMed ID: 18355042 [TBL] [Abstract][Full Text] [Related]
31. Oxidative inactivation of rhodanese by hydrogen peroxide produces states that show differential reactivation. Horowitz PM; Bowman S J Biol Chem; 1989 Feb; 264(6):3311-6. PubMed ID: 2914953 [TBL] [Abstract][Full Text] [Related]
32. Interaction of rhodanese with intermediates of oxygen reduction. Cannella C; Berni R FEBS Lett; 1983 Oct; 162(1):180-4. PubMed ID: 6311631 [TBL] [Abstract][Full Text] [Related]
33. The effect of sodium tetrathionate on cyanide conversion to thiocyanate by enzymatic and non-enzymatic mechanisms. Baskin SI; Kirby SD J Appl Toxicol; 1990 Oct; 10(5):379-82. PubMed ID: 2254590 [TBL] [Abstract][Full Text] [Related]
34. Rhodanese-Mediated sulfur transfer to succinate dehydrogenase. Bonomi F; Pagani S; Cerletti P; Cannella C Eur J Biochem; 1977 Jan; 72(1):17-24. PubMed ID: 318999 [TBL] [Abstract][Full Text] [Related]
35. Studies of the N-bromosuccinimide inactivation of the enzyme rhodanese. Guido K; Horowitz P Biochim Biophys Acta; 1977 Nov; 485(1):95-100. PubMed ID: 911868 [TBL] [Abstract][Full Text] [Related]
36. Active site structural features for chemically modified forms of rhodanese. Gliubich F; Gazerro M; Zanotti G; Delbono S; Bombieri G; Berni R J Biol Chem; 1996 Aug; 271(35):21054-61. PubMed ID: 8702871 [TBL] [Abstract][Full Text] [Related]
37. Active site cysteinyl and arginyl residues of rhodanese. A novel formation of disulfide bonds in the active site promoted by phenylglyoxal. Weng L; Heinrikson RL; Westley J J Biol Chem; 1978 Nov; 253(22):8109-19. PubMed ID: 711738 [TBL] [Abstract][Full Text] [Related]