These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31656909)

  • 1. In Situ Growth of the Bi
    Kim JH; Ma A; Jung H; Kim HY; Choe HR; Kim YH; Nam KM
    ACS Omega; 2019 Oct; 4(17):17359-17365. PubMed ID: 31656909
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Xiao HJ; Liao XJ; Wang H; Ren SW; Cao JT; Liu YM
    Front Chem; 2022; 10():845617. PubMed ID: 35665063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comprehensive Study of the Growth Mechanism and Photoelectrochemical Activity of a BiVO
    Hong C; Kim YI; Seo JH; Kim JH; Ma A; Lim YJ; Seo D; Baek SY; Jung H; Nam KM
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):39713-39719. PubMed ID: 32569460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Controlled synthesis and exceptional photoelectrocatalytic properties of Bi
    Chen Y; Wang G; Li H; Zhang F; Jiang H; Tian G
    J Colloid Interface Sci; 2019 Nov; 555():214-223. PubMed ID: 31382140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anion-exchange engineering of cookie-like Bi
    Pei Y; Li X; Chu H; Ge Y; Dong P; Baines R; Pei L; Ye M; Shen J
    Talanta; 2017 Apr; 165():44-51. PubMed ID: 28153280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photogenerated Hole-Induced Chemical-Chemical Redox Cycling Strategy on a Direct
    Cao JT; Lv JL; Liao XJ; Ma SH; Liu YM
    Anal Chem; 2021 Jul; 93(28):9920-9926. PubMed ID: 34213883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ synthesis of Bi2S3 sensitized WO3 nanoplate arrays with less interfacial defects and enhanced photoelectrochemical performance.
    Liu C; Yang Y; Li W; Li J; Li Y; Chen Q
    Sci Rep; 2016 Mar; 6():23451. PubMed ID: 26988275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of electron transport channels in type-I heterostructures of Bi
    Wang Q; Zhang Y; Li J; Liu N; Jiao Y; Jiao Z
    J Colloid Interface Sci; 2020 May; 567():145-153. PubMed ID: 32045736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The interlace of Bi2S3 nanowires with TiO2 nanorods: An effective strategy for high photoelectrochemical performance.
    Han M; Jia J
    J Colloid Interface Sci; 2016 Nov; 481():91-9. PubMed ID: 27454032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ZnO dense nanowire array on a film structure in a single crystal domain texture for optical and photoelectrochemical applications.
    Zhong M; Sato Y; Kurniawan M; Apostoluk A; Masenelli B; Maeda E; Ikuhara Y; Delaunay JJ
    Nanotechnology; 2012 Dec; 23(49):495602. PubMed ID: 23150203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring heterostructured Bi
    Wang L; Liu Z; Wang D; Ni S; Han D; Wang W; Niu L
    Biosens Bioelectron; 2017 Aug; 94():107-114. PubMed ID: 28262608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen vacancy enhanced photoelectrochemical performance of Bi
    Ge L; Liu Q; Jiang D; Ding L; Wen Z; Guo Y; Ding C; Wang K
    Biosens Bioelectron; 2019 Jun; 135():145-152. PubMed ID: 31005766
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of electrical contact on the performance of Bi₂S₃ single nanowire photodetectors.
    Li R; Yang J; Huo N; Fan C; Lu F; Yan T; Wei Z; Li J
    Chemphyschem; 2014 Aug; 15(12):2510-6. PubMed ID: 25099253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Enhanced Thermoelectric Properties of Bi/Bi
    Ge ZH; Qin P; He D; Chong X; Feng D; Ji YH; Feng J; He J
    ACS Appl Mater Interfaces; 2017 Feb; 9(5):4828-4834. PubMed ID: 28084071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of flexible photoelectrochemical solar cells based on ordered nanostructural BiOI/Bi2S3 heterojunction films.
    Fang M; Jia H; He W; Lei Y; Zhang L; Zheng Z
    Phys Chem Chem Phys; 2015 May; 17(20):13531-8. PubMed ID: 25941684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Heterojunction-Mediated Biointerface for Photoelectrochemical Aptasensing: Case of Direct Z-Scheme CdTe-Bi
    Liu Q; Huan J; Hao N; Qian J; Mao H; Wang K
    ACS Appl Mater Interfaces; 2017 May; 9(21):18369-18376. PubMed ID: 28497956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective signal-on photoelectrochemical immunoassay of subgroup J avian leukosis virus based on Bi2S3 nanorods as photosensitizer and in situ generated ascorbic acid for electron donating.
    Sun B; Qiao F; Chen L; Zhao Z; Yin H; Ai S
    Biosens Bioelectron; 2014 Apr; 54():237-43. PubMed ID: 24287410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bi2MoO6/BiVO4 heterojunction electrode with enhanced photoelectrochemical properties.
    Ma Y; Jia Y; Wang L; Yang M; Bi Y; Qi Y
    Phys Chem Chem Phys; 2016 Feb; 18(7):5091-4. PubMed ID: 26814422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-quality ultralong Bi2S3 nanowires: structure, growth, and properties.
    Yu Y; Jin CH; Wang RH; Chen Q; Peng LM
    J Phys Chem B; 2005 Oct; 109(40):18772-6. PubMed ID: 16853415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.