These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31656961)

  • 1. Adsorption of aromatic carboxylic acids on carbon nanotubes: impact of surface functionalization, molecular size and structure.
    Li S; Arsano I; Talapatra S; Tsige M; Ma X
    Environ Sci Process Impacts; 2019 Dec; 21(12):2109-2117. PubMed ID: 31656961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of Emerging Ionizable Contaminants on Carbon Nanotubes: Advancements and Challenges.
    Ma X; Agarwal S
    Molecules; 2016 May; 21(5):. PubMed ID: 27187338
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of hydrophobic effect to the sorption of phenanthrene, 9-phenanthrol and 9, 10-phenanthrenequinone on carbon nanotubes.
    Peng H; Zhang D; Pan B; Peng J
    Chemosphere; 2017 Feb; 168():739-747. PubMed ID: 27836280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insight into adsorption mechanism of ionizable compounds on carbon nanotubes.
    Li X; Pignatello JJ; Wang Y; Xing B
    Environ Sci Technol; 2013 Aug; 47(15):8334-41. PubMed ID: 23799778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of mono/competitive adsorption of environmentally relevant ionized weak acids on graphite: impact of molecular properties and thermodynamics.
    Moustafa AM; McPhedran KN; Moreira J; Gamal El-Din M
    Environ Sci Technol; 2014 Dec; 48(24):14472-80. PubMed ID: 25403017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of hydroxyl- and amino-substituted aromatics to carbon nanotubes.
    Chen W; Duan L; Wang L; Zhu D
    Environ Sci Technol; 2008 Sep; 42(18):6862-8. PubMed ID: 18853801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption removal of antiviral drug oseltamivir and its metabolite oseltamivir carboxylate by carbon nanotubes: Effects of carbon nanotube properties and media.
    Wang WL; Wu QY; Wang ZM; Niu LX; Wang C; Sun MC; Hu HY
    J Environ Manage; 2015 Oct; 162():326-33. PubMed ID: 26265601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive model development for adsorption of aromatic contaminants by multi-walled carbon nanotubes.
    Apul OG; Wang Q; Shao T; Rieck JR; Karanfil T
    Environ Sci Technol; 2013 Mar; 47(5):2295-303. PubMed ID: 22747100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching.
    Ji L; Shao Y; Xu Z; Zheng S; Zhu D
    Environ Sci Technol; 2010 Aug; 44(16):6429-36. PubMed ID: 20704245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of polar and nonpolar organic chemicals to carbon nanotubes.
    Chen W; Duan L; Zhu D
    Environ Sci Technol; 2007 Dec; 41(24):8295-300. PubMed ID: 18200854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: effects of HA, MWNT and solution properties.
    Lin D; Li T; Yang K; Wu F
    J Hazard Mater; 2012 Nov; 241-242():404-10. PubMed ID: 23069335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Adsorption of Hydroxyl- and Amino-Substituted Aromatic Chemicals to Nitrogen-Doped Multiwall Carbon Nanotubes: A Combined Batch and Theoretical Calculation Study.
    Zuo L; Guo Y; Li X; Fu H; Qu X; Zheng S; Gu C; Zhu D; Alvarez PJ
    Environ Sci Technol; 2016 Jan; 50(2):899-905. PubMed ID: 26669961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents.
    Li X; Zhao H; Quan X; Chen S; Zhang Y; Yu H
    J Hazard Mater; 2011 Feb; 186(1):407-15. PubMed ID: 21115219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of carbon nanotube morphology on phenanthrene adsorption.
    Apul OG; Shao T; Zhang S; Karanfil T
    Environ Toxicol Chem; 2012 Jan; 31(1):73-8. PubMed ID: 22002628
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge-assisted hydrogen bonding as a cohesive force in soil organic matter: water solubility enhancement by addition of simple carboxylic acids.
    Ni J; Pignatello JJ
    Environ Sci Process Impacts; 2018 Sep; 20(9):1225-1233. PubMed ID: 30084855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of humic acids on physicochemical property and Cd(II) sorption of multiwalled carbon nanotubes.
    Tian X; Li T; Yang K; Xu Y; Lu H; Lin D
    Chemosphere; 2012 Nov; 89(11):1316-22. PubMed ID: 22726423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption kinetics of aromatic compounds on carbon nanotubes and activated carbons.
    Zhang S; Shao T; Kose HS; Karanfil T
    Environ Toxicol Chem; 2012 Jan; 31(1):79-85. PubMed ID: 22021047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining kinetic investigation with surface spectroscopic examination to study the role of aromatic carboxyl groups in NOM adsorption by aluminum hydroxide.
    Guan XH; Chen GH; Shang C
    J Colloid Interface Sci; 2006 Sep; 301(2):419-27. PubMed ID: 16777125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding of pollutant aromatics on carbon nanotubes and graphite.
    Ramraj A; Hillier IH
    J Chem Inf Model; 2010 Apr; 50(4):585-8. PubMed ID: 20356088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impacts of aggregation and surface chemistry of carbon nanotubes on the adsorption of synthetic organic compounds.
    Zhang S; Shado T; Bekaroglu SS; Karanfil T
    Environ Sci Technol; 2009 Aug; 43(15):5719-25. PubMed ID: 19731668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.