These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31656972)

  • 1. Quantum chemical calculations of
    Sojka M; Nečas M; Toušek J
    J Mol Model; 2019 Oct; 25(11):329. PubMed ID: 31656972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A relativistic DFT methodology for calculating the structures and NMR chemical shifts of octahedral platinum and iridium complexes.
    Vícha J; Patzschke M; Marek R
    Phys Chem Chem Phys; 2013 May; 15(20):7740-54. PubMed ID: 23598437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spin states of Mn(III) meso-tetraphenylporphyrin chloride assessed by density functional methods.
    de Lima Bezerra Cavalcanti H; Bruno Rocha G
    J Mol Model; 2017 Nov; 23(12):363. PubMed ID: 29192384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Validation of Relativistic DFT Approaches to the Calculation of NMR Chemical Shifts in Square-Planar Pt(2+) and Au(3+) Complexes.
    Pawlak T; Munzarová ML; Pazderski L; Marek R
    J Chem Theory Comput; 2011 Dec; 7(12):3909-23. PubMed ID: 26598337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural interpretation of the
    Fukal J; Páv O; Buděšínský M; Rosenberg I; Šebera J; Sychrovský V
    Phys Chem Chem Phys; 2019 May; 21(19):9924-9934. PubMed ID: 31038518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DFT Calculations of
    Kondrashova SA; Polyancev FM; Latypov SK
    Molecules; 2022 Apr; 27(9):. PubMed ID: 35566018
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Nguyen TT
    R Soc Open Sci; 2021 Sep; 8(9):210954. PubMed ID: 34631126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is the spin-orbit coupling important in the prediction of the 51V hyperfine coupling constants of V(IV) O2+ species? ORCA versus Gaussian performance and biological applications.
    Micera G; Garribba E
    J Comput Chem; 2011 Oct; 32(13):2822-35. PubMed ID: 21735449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate prediction of 195Pt NMR chemical shifts for a series of Pt(II) and Pt(IV) antitumor agents by a non-relativistic DFT computational protocol.
    Tsipis AC; Karapetsas IN
    Dalton Trans; 2014 Apr; 43(14):5409-26. PubMed ID: 24519094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational studies of 13C NMR chemical shifts of saccharides.
    Taubert S; Konschin H; Sundholm D
    Phys Chem Chem Phys; 2005 Jul; 7(13):2561-9. PubMed ID: 16189565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of (195) Pt NMR chemical shifts of dissolution products of H2 [Pt(OH)6 ] in nitric acid solutions by DFT methods: how important are the counter-ion effects?
    Tsipis AC; Karapetsas IN
    Magn Reson Chem; 2016 Aug; 54(8):656-64. PubMed ID: 26990565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with quinoline, isoquinoline, and 2,2'-biquinoline.
    Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E
    Magn Reson Chem; 2007 Dec; 45(12):1059-71. PubMed ID: 18044805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum chemical calculations of (31)P NMR chemical shifts: scopes and limitations.
    Latypov SK; Polyancev FM; Yakhvarov DG; Sinyashin OG
    Phys Chem Chem Phys; 2015 Mar; 17(10):6976-87. PubMed ID: 25683906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance shielding constants and chemical shifts in linear 199Hg compounds: a comparison of three relativistic computational methods.
    Arcisauskaite V; Melo JI; Hemmingsen L; Sauer SP
    J Chem Phys; 2011 Jul; 135(4):044306. PubMed ID: 21806118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of DFT methods for predicting geometries and NMR spectra of Bi(III) dithiocarbamate complexes with antitumor properties.
    de Barros Leite NF; Marques RB; Macedo-Filho A; Rocha GB; Martins EPS
    J Mol Model; 2024 May; 30(6):177. PubMed ID: 38775913
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic assessment of DFT methods for geometry optimization of mononuclear platinum-containing complexes.
    Debefve LM; Pollock CJ
    Phys Chem Chem Phys; 2021 Nov; 23(43):24780-24788. PubMed ID: 34714314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Which DFT functional performs well in the calculation of methylcobalamin? Comparison of the B3LYP and BP86 functionals and evaluation of the impact of empirical dispersion correction.
    Hirao H
    J Phys Chem A; 2011 Aug; 115(33):9308-13. PubMed ID: 21806069
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DFT calculations of
    Safi ZS; Wazzan N
    Sci Rep; 2022 Oct; 12(1):17798. PubMed ID: 36273019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental and quantum-chemical studies of 1H, 13C and 15N NMR coordination shifts in Pd(II) and Pt(II) chloride complexes with methyl and phenyl derivatives of 2,2'-bipyridine and 1,10-phenanthroline.
    Pazderski L; Tousek J; Sitkowski J; Kozerski L; Szłyk E
    Magn Reson Chem; 2007 Dec; 45(12):1045-58. PubMed ID: 18044804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TD-DFT Benchmark on Inorganic Pt(II) and Ir(III) Complexes.
    Latouche C; Skouteris D; Palazzetti F; Barone V
    J Chem Theory Comput; 2015 Jul; 11(7):3281-9. PubMed ID: 26575764
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.