These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31657136)

  • 1. Hierarchical Structure of Silk Materials Versus Mechanical Performance and Mesoscopic Engineering Principles.
    Qiu W; Patil A; Hu F; Liu XY
    Small; 2019 Dec; 15(51):e1903948. PubMed ID: 31657136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal networks in silk fibrous materials: from hierarchical structure to ultra performance.
    Nguyen AT; Huang QL; Yang Z; Lin N; Xu G; Liu XY
    Small; 2015 Mar; 11(9-10):1039-54. PubMed ID: 25510895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correlation between hierarchical structure of crystal networks and macroscopic performance of mesoscopic soft materials and engineering principles.
    Lin N; Liu XY
    Chem Soc Rev; 2015 Nov; 44(21):7881-915. PubMed ID: 26214062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes.
    Lv L; Han X; Zong L; Li M; You J; Wu X; Li C
    ACS Nano; 2017 Aug; 11(8):8178-8184. PubMed ID: 28723068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Programing Performance of Silk Fibroin Superstrong Scaffolds by Mesoscopic Regulation among Hierarchical Structures.
    Zhang Y; Tu H; Wu R; Patil A; Hou C; Lin Z; Meng Z; Ma L; Yu R; Yu W; Liu XY
    Biomacromolecules; 2020 Oct; 21(10):4169-4179. PubMed ID: 32909737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polypeptide templating for designer hierarchical materials.
    Sun H; Marelli B
    Nat Commun; 2020 Jan; 11(1):351. PubMed ID: 31953407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Molecular Reconstruction of Mesoscopic Functional Conductive Silk Fibrous Materials to Remote Respiration Monitoring.
    Ma L; Liu Q; Wu R; Meng Z; Patil A; Yu R; Yang Y; Zhu S; Fan X; Hou C; Li Y; Qiu W; Huang L; Wang J; Lin N; Wan Y; Hu J; Liu XY
    Small; 2020 Jul; 16(26):e2000203. PubMed ID: 32452630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinspired Silk Fiber Spinning System via Automated Track-Drawing.
    Jao D; Hu X; Beachley V
    ACS Appl Bio Mater; 2021 Dec; 4(12):8192-8204. PubMed ID: 35005928
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process.
    Bai S; Liu S; Zhang C; Xu W; Lu Q; Han H; Kaplan DL; Zhu H
    Acta Biomater; 2013 Aug; 9(8):7806-13. PubMed ID: 23628774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amorphous Silk Nanofiber Solutions for Fabricating Silk-Based Functional Materials.
    Dong X; Zhao Q; Xiao L; Lu Q; Kaplan DL
    Biomacromolecules; 2016 Sep; 17(9):3000-6. PubMed ID: 27476755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and properties of multiwalled carbon nanotubes incorporated organic silk fibroin cryogels.
    Kwon SM; Kim HS; Jin HJ
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7204-8. PubMed ID: 19908758
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Silk Road: From Mesoscopic Reconstruction/Functionalization to Flexible Meso-Electronics/Photonics Based on Cocoon Silk Materials.
    Shi C; Hu F; Wu R; Xu Z; Shao G; Yu R; Liu XY
    Adv Mater; 2021 Dec; 33(50):e2005910. PubMed ID: 33852764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of superior spider silk: from nanostructure to mechanical properties.
    Du N; Liu XY; Narayanan J; Li L; Lim ML; Li D
    Biophys J; 2006 Dec; 91(12):4528-35. PubMed ID: 16950851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomimetic Mechanically Enhanced Carbon Nanotube Fibers by Silk Fibroin Infiltration.
    Yin Z; Liang X; Zhou K; Li S; Lu H; Zhang M; Wang H; Xu Z; Zhang Y
    Small; 2021 May; 17(19):e2100066. PubMed ID: 33792159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, expression and solid-state NMR characterization of silk-like materials constructed from sequences of spider silk, Samia cynthia ricini and Bombyx mori silk fibroins.
    Yang M; Asakura T
    J Biochem; 2005 Jun; 137(6):721-9. PubMed ID: 16002994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mesoscopic-Functionalization of Silk Fibroin with Gold Nanoclusters Mediated by Keratin and Bioinspired Silk Synapse.
    Xing Y; Shi C; Zhao J; Qiu W; Lin N; Wang J; Yan XB; Yu WD; Liu XY
    Small; 2017 Oct; 13(40):. PubMed ID: 28863240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of high-quality silk fibroin fiber by wet spinning from CaCl2-formic acid solvent.
    Zhang F; Lu Q; Yue X; Zuo B; Qin M; Li F; Kaplan DL; Zhang X
    Acta Biomater; 2015 Jan; 12():139-145. PubMed ID: 25281787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and engineering of silk fibroin scaffolds with biomimetic hierarchical structures.
    Wang H; Liu XY; Chuah YJ; Goh JC; Li JL; Xu H
    Chem Commun (Camb); 2013 Feb; 49(14):1431-3. PubMed ID: 23321676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regenerated silk fibroin nanofibers: water vapor-induced structural changes and their effects on the behavior of normal human cells.
    Min BM; Jeong L; Lee KY; Park WH
    Macromol Biosci; 2006 Apr; 6(4):285-92. PubMed ID: 16572474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.