These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 31657443)
1. Macroorganisation and flexibility of thylakoid membranes. Lambrev PH; Akhtar P Biochem J; 2019 Oct; 476(20):2981-3018. PubMed ID: 31657443 [TBL] [Abstract][Full Text] [Related]
2. Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Goral TK; Johnson MP; Duffy CD; Brain AP; Ruban AV; Mullineaux CW Plant J; 2012 Jan; 69(2):289-301. PubMed ID: 21919982 [TBL] [Abstract][Full Text] [Related]
3. Fingerprinting the macro-organisation of pigment-protein complexes in plant thylakoid membranes in vivo by circular-dichroism spectroscopy. Tóth TN; Rai N; Solymosi K; Zsiros O; Schröder WP; Garab G; van Amerongen H; Horton P; Kovács L Biochim Biophys Acta; 2016 Sep; 1857(9):1479-1489. PubMed ID: 27154055 [TBL] [Abstract][Full Text] [Related]
4. Anisotropic circular dichroism signatures of oriented thylakoid membranes and lamellar aggregates of LHCII. Miloslavina Y; Lambrev PH; Jávorfi T; Várkonyi Z; Karlický V; Wall JS; Hind G; Garab G Photosynth Res; 2012 Mar; 111(1-2):29-39. PubMed ID: 21667227 [TBL] [Abstract][Full Text] [Related]
5. Self-assembly and structural-functional flexibility of oxygenic photosynthetic machineries: personal perspectives. Garab G Photosynth Res; 2016 Jan; 127(1):131-50. PubMed ID: 26494196 [TBL] [Abstract][Full Text] [Related]
6. Towards elucidation of dynamic structural changes of plant thylakoid architecture. Anderson JM; Horton P; Kim EH; Chow WS Philos Trans R Soc Lond B Biol Sci; 2012 Dec; 367(1608):3515-24. PubMed ID: 23148278 [TBL] [Abstract][Full Text] [Related]
7. Changes in antenna sizes of photosystems during state transitions in granal and stroma-exposed thylakoid membrane of intact chloroplasts in Arabidopsis mesophyll protoplasts. Kim E; Ahn TK; Kumazaki S Plant Cell Physiol; 2015 Apr; 56(4):759-68. PubMed ID: 25604051 [TBL] [Abstract][Full Text] [Related]
8. Excitation migration in fluctuating light-harvesting antenna systems. Chmeliov J; Trinkunas G; van Amerongen H; Valkunas L Photosynth Res; 2016 Jan; 127(1):49-60. PubMed ID: 25605669 [TBL] [Abstract][Full Text] [Related]
9. Monomeric light harvesting complexes enhance excitation energy transfer from LHCII to PSII and control their lateral spacing in thylakoids. Dall'Osto L; Cazzaniga S; Zappone D; Bassi R Biochim Biophys Acta Bioenerg; 2020 Apr; 1861(4):148035. PubMed ID: 31226317 [TBL] [Abstract][Full Text] [Related]
10. Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma. Anderson JM; Chow WS; De Las Rivas J Photosynth Res; 2008; 98(1-3):575-87. PubMed ID: 18998237 [TBL] [Abstract][Full Text] [Related]
11. Photosynthetic light reactions--an adjustable hub in basic production and plant immunity signaling. Kangasjärvi S; Tikkanen M; Durian G; Aro EM Plant Physiol Biochem; 2014 Aug; 81():128-34. PubMed ID: 24361390 [TBL] [Abstract][Full Text] [Related]
12. Structural rearrangements in chloroplast thylakoid membranes revealed by differential scanning calorimetry and circular dichroism spectroscopy. Thermo-optic effect. Dobrikova AG; Várkonyi Z; Krumova SB; Kovács L; Kostov GK; Todinova SJ; Busheva MC; Taneva SG; Garab G Biochemistry; 2003 Sep; 42(38):11272-80. PubMed ID: 14503877 [TBL] [Abstract][Full Text] [Related]
13. High light induced changes in organization, protein profile and function of photosynthetic machinery in Chlamydomonas reinhardtii. Nama S; Madireddi SK; Devadasu ER; Subramanyam R J Photochem Photobiol B; 2015 Nov; 152(Pt B):367-76. PubMed ID: 26388469 [TBL] [Abstract][Full Text] [Related]
14. Membrane crystals of plant light-harvesting complex II disassemble reversibly in light. Hind G; Wall JS; Várkonyi Z; Istokovics A; Lambrev PH; Garab G Plant Cell Physiol; 2014 Jul; 55(7):1296-303. PubMed ID: 24793749 [TBL] [Abstract][Full Text] [Related]
15. Granal stacking of thylakoid membranes in higher plant chloroplasts: the physicochemical forces at work and the functional consequences that ensue. Chow WS; Kim EH; Horton P; Anderson JM Photochem Photobiol Sci; 2005 Dec; 4(12):1081-90. PubMed ID: 16307126 [TBL] [Abstract][Full Text] [Related]
16. Light-harvesting and structural organization of Photosystem II: from individual complexes to thylakoid membrane. Croce R; van Amerongen H J Photochem Photobiol B; 2011; 104(1-2):142-53. PubMed ID: 21402480 [TBL] [Abstract][Full Text] [Related]
17. Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. Horton P; Wentworth M; Ruban A FEBS Lett; 2005 Aug; 579(20):4201-6. PubMed ID: 16051219 [TBL] [Abstract][Full Text] [Related]
18. Light harvesting control in plants. Ruban AV FEBS Lett; 2018 Sep; 592(18):3030-3039. PubMed ID: 29797317 [TBL] [Abstract][Full Text] [Related]
19. Low-light-induced formation of semicrystalline photosystem II arrays in higher plant chloroplasts. Kirchhoff H; Haase W; Wegner S; Danielsson R; Ackermann R; Albertsson PA Biochemistry; 2007 Oct; 46(39):11169-76. PubMed ID: 17845010 [TBL] [Abstract][Full Text] [Related]
20. Carotenoid-chlorophyll coupling and fluorescence quenching correlate with protein packing density in grana-thylakoids. Holleboom CP; Yoo S; Liao PN; Compton I; Haase W; Kirchhoff H; Walla PJ J Phys Chem B; 2013 Sep; 117(38):11022-30. PubMed ID: 23402591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]