These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 31657552)
1. Technoeconomic Analysis of Brackish Water Capacitive Deionization: Navigating Tradeoffs between Performance, Lifetime, and Material Costs. Hand S; Guest JS; Cusick RD Environ Sci Technol; 2019 Nov; 53(22):13353-13363. PubMed ID: 31657552 [TBL] [Abstract][Full Text] [Related]
2. Energy Efficiency of Electro-Driven Brackish Water Desalination: Electrodialysis Significantly Outperforms Membrane Capacitive Deionization. Patel SK; Qin M; Walker WS; Elimelech M Environ Sci Technol; 2020 Mar; 54(6):3663-3677. PubMed ID: 32084313 [TBL] [Abstract][Full Text] [Related]
3. Theoretical framework for designing a desalination plant based on membrane capacitive deionization. Wang L; Lin S Water Res; 2019 Jul; 158():359-369. PubMed ID: 31055016 [TBL] [Abstract][Full Text] [Related]
4. Brackish groundwater desalination by constant current membrane capacitive deionization (MCDI): Results of a long-term field trial in Central Australia. Zhu Y; Miller C; Lian B; Wang Y; Fletcher J; Zhou H; He Z; Lyu S; Purser M; Juracich P; Sweeney D; Waite TD Water Res; 2024 May; 254():121413. PubMed ID: 38489850 [TBL] [Abstract][Full Text] [Related]
5. Optimization of constant-current operation in membrane capacitive deionization (MCDI) using variable discharging operations. He Z; Liu S; Lian B; Fletcher J; Bales C; Wang Y; Waite TD Water Res; 2021 Oct; 204():117646. PubMed ID: 34543974 [TBL] [Abstract][Full Text] [Related]
6. Energy recovery in pilot scale membrane CDI treatment of brackish waters. Tan C; He C; Fletcher J; Waite TD Water Res; 2020 Jan; 168():115146. PubMed ID: 31627136 [TBL] [Abstract][Full Text] [Related]
7. Machine learning modelling of a membrane capacitive deionization (MCDI) system for prediction of long-term system performance and optimization of process control parameters in remote brackish water desalination. Zhu Y; Lian B; Wang Y; Miller C; Bales C; Fletcher J; Yao L; Waite TD Water Res; 2022 Dec; 227():119349. PubMed ID: 36402097 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of Activated Carbon Decorated with ZnO Nanorod-Based Electrodes for Desalination of Brackish Water Using Capacitive Deionization Technology. Martinez J; Colán M; Castillón R; Ramos PG; Paria R; Sánchez L; Rodríguez JM Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674925 [TBL] [Abstract][Full Text] [Related]
9. Brackish water desalination using reverse osmosis and capacitive deionization at the water-energy nexus. Pan SY; Haddad AZ; Kumar A; Wang SW Water Res; 2020 Sep; 183():116064. PubMed ID: 32745671 [TBL] [Abstract][Full Text] [Related]
10. A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Hassanvand A; Chen GQ; Webley PA; Kentish SE Water Res; 2018 Mar; 131():100-109. PubMed ID: 29277078 [TBL] [Abstract][Full Text] [Related]
11. Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Tang W; He D; Zhang C; Kovalsky P; Waite TD Water Res; 2017 Sep; 120():229-237. PubMed ID: 28500988 [TBL] [Abstract][Full Text] [Related]
12. Optimization of sulfate removal from brackish water by membrane capacitive deionization (MCDI). Tang W; He D; Zhang C; Waite TD Water Res; 2017 Sep; 121():302-310. PubMed ID: 28558281 [TBL] [Abstract][Full Text] [Related]
13. Coupling ion-exchangers with inexpensive activated carbon fiber electrodes to enhance the performance of capacitive deionization cells for domestic wastewater desalination. Liang P; Yuan L; Yang X; Zhou S; Huang X Water Res; 2013 May; 47(7):2523-30. PubMed ID: 23497976 [TBL] [Abstract][Full Text] [Related]
14. Global Sensitivity Analysis To Characterize Operational Limits and Prioritize Performance Goals of Capacitive Deionization Technologies. Hand S; Shang X; Guest JS; Smith KC; Cusick RD Environ Sci Technol; 2019 Apr; 53(7):3748-3756. PubMed ID: 30821148 [TBL] [Abstract][Full Text] [Related]
15. Integration of photovoltaic energy supply with membrane capacitive deionization (MCDI) for salt removal from brackish waters. Tan C; He C; Tang W; Kovalsky P; Fletcher J; Waite TD Water Res; 2018 Dec; 147():276-286. PubMed ID: 30317037 [TBL] [Abstract][Full Text] [Related]
16. High performance of membrane capacitive deionization with ZnS/g-C Wei S; Feng L; Zhang X; Sun Z; Bai H; Liu P Water Sci Technol; 2023 Dec; 88(11):2849-2861. PubMed ID: 38096073 [TBL] [Abstract][Full Text] [Related]
17. A Comparison of Capacitive Deionization and Membrane Capacitive Deionization Using Novel Fabricated Ion Exchange Membranes. Elewa MM; El Batouti M; Al-Harby NF Materials (Basel); 2023 Jul; 16(13):. PubMed ID: 37445186 [TBL] [Abstract][Full Text] [Related]
18. Electrosorptive removal of salt ions from water by membrane capacitive deionization (MCDI): characterization, adsorption equilibrium, and kinetics. Li G; Cai W; Zhao R; Hao L Environ Sci Pollut Res Int; 2019 Jun; 26(17):17787-17796. PubMed ID: 31030403 [TBL] [Abstract][Full Text] [Related]
19. Resistance identification and rational process design in Capacitive Deionization. Dykstra JE; Zhao R; Biesheuvel PM; van der Wal A Water Res; 2016 Jan; 88():358-370. PubMed ID: 26512814 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of long-term performance of a continuously operated flow-electrode CDI system for salt removal from brackish waters. Zhang C; Wu L; Ma J; Wang M; Sun J; Waite TD Water Res; 2020 Apr; 173():115580. PubMed ID: 32065937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]