These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 31657692)
1. Detailed Molecular Biochemistry for Novel Therapeutic Design Against Nipah and Hendra Virus: A Systematic Review. Bhattacharya S; Dhar S; Banerjee A; Ray S Curr Mol Pharmacol; 2020; 13(2):108-125. PubMed ID: 31657692 [TBL] [Abstract][Full Text] [Related]
2. An antibody against the F glycoprotein inhibits Nipah and Hendra virus infections. Dang HV; Chan YP; Park YJ; Snijder J; Da Silva SC; Vu B; Yan L; Feng YR; Rockx B; Geisbert TW; Mire CE; Broder CC; Veesler D Nat Struct Mol Biol; 2019 Oct; 26(10):980-987. PubMed ID: 31570878 [TBL] [Abstract][Full Text] [Related]
3. Nipah and Hendra Virus Glycoproteins Induce Comparable Homologous but Distinct Heterologous Fusion Phenotypes. Bradel-Tretheway BG; Zamora JLR; Stone JA; Liu Q; Li J; Aguilar HC J Virol; 2019 Jul; 93(13):. PubMed ID: 30971473 [TBL] [Abstract][Full Text] [Related]
4. Novel Functions of Hendra Virus G N-Glycans and Comparisons to Nipah Virus. Bradel-Tretheway BG; Liu Q; Stone JA; McInally S; Aguilar HC J Virol; 2015 Jul; 89(14):7235-47. PubMed ID: 25948743 [TBL] [Abstract][Full Text] [Related]
5. Efficient reverse genetics reveals genetic determinants of budding and fusogenic differences between Nipah and Hendra viruses and enables real-time monitoring of viral spread in small animal models of henipavirus infection. Yun T; Park A; Hill TE; Pernet O; Beaty SM; Juelich TL; Smith JK; Zhang L; Wang YE; Vigant F; Gao J; Wu P; Lee B; Freiberg AN J Virol; 2015 Jan; 89(2):1242-53. PubMed ID: 25392218 [TBL] [Abstract][Full Text] [Related]
6. Third Helical Domain of the Nipah Virus Fusion Glycoprotein Modulates both Early and Late Steps in the Membrane Fusion Cascade. Zamora JLR; Ortega V; Johnston GP; Li J; André NM; Monreal IA; Contreras EM; Whittaker GR; Aguilar HC J Virol; 2020 Sep; 94(19):. PubMed ID: 32669342 [TBL] [Abstract][Full Text] [Related]
7. Prefusion stabilization of the Hendra and Langya virus F proteins. Byrne PO; Blade EG; Fisher BE; Ambrozak DR; Ramamohan AR; Graham BS; Loomis RJ; McLellan JS J Virol; 2024 Feb; 98(2):e0137223. PubMed ID: 38214525 [TBL] [Abstract][Full Text] [Related]
8. Molecular determinants of antiviral potency of paramyxovirus entry inhibitors. Porotto M; Carta P; Deng Y; Kellogg GE; Whitt M; Lu M; Mungall BA; Moscona A J Virol; 2007 Oct; 81(19):10567-74. PubMed ID: 17652384 [TBL] [Abstract][Full Text] [Related]
9. Structure-guided mutagenesis of Henipavirus receptor-binding proteins reveals molecular determinants of receptor usage and antibody-binding epitopes. Oguntuyo KY; Haas GD; Azarm KD; Stevens CS; Brambilla L; Kowdle SS; Avanzato VA; Pryce R; Freiberg AN; Bowden TA; Lee B J Virol; 2024 Mar; 98(3):e0183823. PubMed ID: 38426726 [TBL] [Abstract][Full Text] [Related]
10. Developments towards effective treatments for Nipah and Hendra virus infection. Bossart KN; Broder CC Expert Rev Anti Infect Ther; 2006 Feb; 4(1):43-55. PubMed ID: 16441208 [TBL] [Abstract][Full Text] [Related]
11. Headless Henipaviral Receptor Binding Glycoproteins Reveal Fusion Modulation by the Head/Stalk Interface and Post-receptor Binding Contributions of the Head Domain. Yeo YY; Buchholz DW; Gamble A; Jager M; Aguilar HC J Virol; 2021 Sep; 95(20):e0066621. PubMed ID: 34288734 [TBL] [Abstract][Full Text] [Related]
12. Glycoprotein attachment with host cell surface receptor ephrin B2 and B3 in mediating entry of nipah and hendra virus: a computational investigation. Priyadarsinee L; Sarma H; Sastry GN J Chem Sci (Bangalore); 2022; 134(4):114. PubMed ID: 36465097 [TBL] [Abstract][Full Text] [Related]
13. Heparan sulfate-dependent enhancement of henipavirus infection. Mathieu C; Dhondt KP; Châlons M; Mély S; Raoul H; Negre D; Cosset FL; Gerlier D; Vivès RR; Horvat B mBio; 2015 Mar; 6(2):e02427. PubMed ID: 25759505 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of henipavirus infection by Nipah virus attachment glycoprotein occurs without cell-surface downregulation of ephrin-B2 or ephrin-B3. Sawatsky B; Grolla A; Kuzenko N; Weingartl H; Czub M J Gen Virol; 2007 Feb; 88(Pt 2):582-591. PubMed ID: 17251577 [TBL] [Abstract][Full Text] [Related]
18. Host cell recognition by the henipaviruses: crystal structures of the Nipah G attachment glycoprotein and its complex with ephrin-B3. Xu K; Rajashankar KR; Chan YP; Himanen JP; Broder CC; Nikolov DB Proc Natl Acad Sci U S A; 2008 Jul; 105(29):9953-8. PubMed ID: 18632560 [TBL] [Abstract][Full Text] [Related]
19. Indiscriminate activities of different henipavirus polymerase complex proteins allow for efficient minigenome replication in hybrid systems. Li X; Yang Y; López CB J Virol; 2024 Jun; 98(6):e0050324. PubMed ID: 38780245 [TBL] [Abstract][Full Text] [Related]
20. Mutations in the G-H loop region of ephrin-B2 can enhance Nipah virus binding and infection. Yuan J; Marsh G; Khetawat D; Broder CC; Wang LF; Shi Z J Gen Virol; 2011 Sep; 92(Pt 9):2142-2152. PubMed ID: 21632558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]