These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 31657694)
1. Influence of Albumin in the Microfluidic Synthesis of PEG-PLGA Nanoparticles. Poller B; Painter GF; Walker GF Pharm Nanotechnol; 2019; 7(6):460-468. PubMed ID: 31657694 [TBL] [Abstract][Full Text] [Related]
2. Influence of PEGylation on PLGA nanoparticle properties, hydrophobic drug release and interactions with human serum albumin. Samkange T; D'Souza S; Obikeze K; Dube A J Pharm Pharmacol; 2019 Oct; 71(10):1497-1507. PubMed ID: 31385295 [TBL] [Abstract][Full Text] [Related]
3. Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: in vitro and in vivo evaluation. Saadati R; Dadashzadeh S Int J Pharm; 2014 Apr; 464(1-2):135-44. PubMed ID: 24451238 [TBL] [Abstract][Full Text] [Related]
4. The roadmap to micro: Generation of micron-sized polymeric particles using a commercial microfluidic system. Cruz-Acuña M; Kakwere H; Lewis JS J Biomed Mater Res A; 2022 May; 110(5):1121-1133. PubMed ID: 35073454 [TBL] [Abstract][Full Text] [Related]
5. The influence of technological parameters on the physicochemical properties of blank PLGA nanoparticles. Ozturk K; Caban S; Kozlu S; Kadayifci E; Yerlikaya F; Capan Y Pharmazie; 2010 Sep; 65(9):665-9. PubMed ID: 21038843 [TBL] [Abstract][Full Text] [Related]
6. PLGA-PEG nanoparticles containing gallium phthalocyanine: Preparation, optimization and analysis of its photodynamic efficiency on red blood cell and Hepa-1C1C7. Lorenzoni D; Souto CAZ; Araujo MB; de Souza Berger C; da Silva LCD; Baratti MO; Ribeiro JN; Endringer DC; Guimarães MCC; da Silva AR J Photochem Photobiol B; 2019 Sep; 198():111582. PubMed ID: 31442827 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin. Liu R; Wang Y; Li X; Bao W; Xia G; Chen W; Cheng J; Xu Y; Guo L; Chen B Drug Des Devel Ther; 2015; 9():2705-19. PubMed ID: 26045659 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic mixing system for precise PLGA-PEG nanoparticles size control. Gimondi S; Guimarães CF; Vieira SF; Gonçalves VMF; Tiritan ME; Reis RL; Ferreira H; Neves NM Nanomedicine; 2022 Feb; 40():102482. PubMed ID: 34748958 [TBL] [Abstract][Full Text] [Related]
10. Nanoparticles based on a hydrophilic polyester with a sheddable PEG coating for protein delivery. Samadi N; van Steenbergen MJ; van den Dikkenberg JB; Vermonden T; van Nostrum CF; Amidi M; Hennink WE Pharm Res; 2014 Oct; 31(10):2593-604. PubMed ID: 24627415 [TBL] [Abstract][Full Text] [Related]
11. Effect of polyethylene glycol (PEG) chain organization on the physicochemical properties of poly(D, L-lactide) (PLA) based nanoparticles. Essa S; Rabanel JM; Hildgen P Eur J Pharm Biopharm; 2010 Jun; 75(2):96-106. PubMed ID: 20211727 [TBL] [Abstract][Full Text] [Related]
12. Low molecular weight PEG-PLGA polymers provide a superior matrix for conjugated polymer nanoparticles in terms of physicochemical properties, biocompatibility and optical/photoacoustic performance. Abelha TF; Neumann PR; Holthof J; Dreiss CA; Alexander C; Green M; Dailey LA J Mater Chem B; 2019 Sep; 7(33):5115-5124. PubMed ID: 31363720 [TBL] [Abstract][Full Text] [Related]
13. Nanoparticle penetration of human cervicovaginal mucus: the effect of polyvinyl alcohol. Yang M; Lai SK; Yu T; Wang YY; Happe C; Zhong W; Zhang M; Anonuevo A; Fridley C; Hung A; Fu J; Hanes J J Control Release; 2014 Oct; 192():202-8. PubMed ID: 25090196 [TBL] [Abstract][Full Text] [Related]
14. A robust systematic design: Optimization and preparation of polymeric nanoparticles of PLGA for docetaxel intravenous delivery. Rafiei P; Haddadi A Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109950. PubMed ID: 31499976 [TBL] [Abstract][Full Text] [Related]
15. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. Gdowski A; Johnson K; Shah S; Gryczynski I; Vishwanatha J; Ranjan A J Nanobiotechnology; 2018 Feb; 16(1):12. PubMed ID: 29433518 [TBL] [Abstract][Full Text] [Related]
16. Preparation and in vivo evaluation of insulin-loaded biodegradable nanoparticles prepared from diblock copolymers of PLGA and PEG. Haggag Y; Abdel-Wahab Y; Ojo O; Osman M; El-Gizawy S; El-Tanani M; Faheem A; McCarron P Int J Pharm; 2016 Feb; 499(1-2):236-246. PubMed ID: 26746800 [TBL] [Abstract][Full Text] [Related]
17. Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology. Mares AG; Pacassoni G; Marti JS; Pujals S; Albertazzi L PLoS One; 2021; 16(6):e0251821. PubMed ID: 34143792 [TBL] [Abstract][Full Text] [Related]
18. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. Sahoo SK; Panyam J; Prabha S; Labhasetwar V J Control Release; 2002 Jul; 82(1):105-14. PubMed ID: 12106981 [TBL] [Abstract][Full Text] [Related]
19. The Use of an Efficient Microfluidic Mixing System for Generating Stabilized Polymeric Nanoparticles for Controlled Drug Release. Morikawa Y; Tagami T; Hoshikawa A; Ozeki T Biol Pharm Bull; 2018; 41(6):899-907. PubMed ID: 29863078 [TBL] [Abstract][Full Text] [Related]
20. A heterogeneously structured composite based on poly(lactic-co-glycolic acid) microspheres and poly(vinyl alcohol) hydrogel nanoparticles for long-term protein drug delivery. Wang N; Wu XS; Li JK Pharm Res; 1999 Sep; 16(9):1430-5. PubMed ID: 10496661 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]