BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31657896)

  • 21. High-Performance CsPbI
    Khan U; Zhinong Y; Khan AA; Zulfiqar A; Ullah N
    Nanoscale Res Lett; 2019 Apr; 14(1):116. PubMed ID: 30941516
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells.
    Zhao X; Shen H; Zhang Y; Li X; Zhao X; Tai M; Li J; Li J; Li X; Lin H
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7826-33. PubMed ID: 26960451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Methylammonium Iodide-Mediated Controlled Crystal Growth of CsPbI
    Kim KS; Jin IS; Park SH; Lim SJ; Jung JW
    ACS Appl Mater Interfaces; 2020 Aug; 12(32):36228-36236. PubMed ID: 32692148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p-i-n Perovskite Solar Cells.
    Wang SY; Chen CP; Chung CL; Hsu CW; Hsu HL; Wu TH; Zhuang JY; Chang CJ; Chen HM; Chang YJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40050-40061. PubMed ID: 31596062
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Efficiency of MAPbI₃ Perovskite Solar Cells with FAPbX₃ Perovskite Quantum Dots.
    Chen LC; Tien CH; Tseng ZL; Ruan JH
    Nanomaterials (Basel); 2019 Jan; 9(1):. PubMed ID: 30669436
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hot-Air-Assisted Fully Air-Processed Barium Incorporated CsPbI
    Mali SS; Patil JV; Hong CK
    Nano Lett; 2019 Sep; 19(9):6213-6220. PubMed ID: 31369285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small Molecule-Polymer Composite Hole-Transporting Layer for Highly Efficient and Stable Perovskite Solar Cells.
    Wang JM; Wang ZK; Li M; Hu KH; Yang YG; Hu Y; Gao XY; Liao LS
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13240-13246. PubMed ID: 28332402
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dual Interfacial Engineering Enables Efficient and Reproducible CsPbI
    Wang Y; Duan C; Zhang X; Rujisamphan N; Liu Y; Li Y; Yuan J; Ma W
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31659-31666. PubMed ID: 32579340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improved hole-transporting property via HAT-CN for perovskite solar cells without lithium salts.
    Ma Y; Chung YH; Zheng L; Zhang D; Yu X; Xiao L; Chen Z; Wang S; Qu B; Gong Q; Zou D
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6406-11. PubMed ID: 25761404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Highly porous Zinc Stannate (Zn2SnO4) nanofibers scaffold photoelectrodes for efficient methyl ammonium halide perovskite solar cells.
    Mali SS; Su Shim C; Kook Hong C
    Sci Rep; 2015 Jun; 5():11424. PubMed ID: 26094863
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability and Performance of CsPbI
    Mariotti S; Hutter OS; Phillips LJ; Yates PJ; Kundu B; Durose K
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3750-3760. PubMed ID: 29345454
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorinated organic ammonium salt passivation for high-efficiency and stable inverted CsPbI2Br perovskite solar cells.
    Liu X; She X; Wang L; Li W; Zhang W; Wang S; Wangyang P; Wang Z; Li J; Cui X; Lan M; Liu L; Sun H; Zhang J; Yang D
    J Chem Phys; 2024 Mar; 160(9):. PubMed ID: 38426522
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Band engineering at the interface of all-inorganic CsPbI
    Zhuang J; Wei Y; Luan Y; Chen N; Mao P; Cao S; Wang J
    Nanoscale; 2019 Aug; 11(31):14553-14560. PubMed ID: 31342051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Universal Efficiency Improvement in Organic Solar Cells Based on a Poly(3-hexylthiophene) Donor and an Indene-C60 Bisadduct Acceptor with Additional Donor Nanowires.
    Joe SY; Yim JH; Ryu SY; Ha NY; Ahn YH; Park JY; Lee S
    Chemphyschem; 2015 Apr; 16(6):1217-22. PubMed ID: 25760990
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrical Loss Management by Molecularly Manipulating Dopant-free Poly(3-hexylthiophene) towards 16.93 % CsPbI
    Li MH; Shao JY; Jiang Y; Qiu FZ; Wang S; Zhang J; Han G; Tang J; Wang F; Wei Z; Yi Y; Zhong YW; Hu JS
    Angew Chem Int Ed Engl; 2021 Jul; 60(30):16388-16393. PubMed ID: 34018292
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved Comprehensive Photovoltaic Performance and Mechanisms by Additive Engineering of Ti
    Wang Y; Li J; Yao X; Xie C; Chen Q; Liu W; Gao Z; Fu Y; Liu Q; He D; Li Y
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):40930-40938. PubMed ID: 36049130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient planar n-i-p type heterojunction flexible perovskite solar cells with sputtered TiO
    Mali SS; Hong CK; Inamdar AI; Im H; Shim SE
    Nanoscale; 2017 Mar; 9(9):3095-3104. PubMed ID: 28195297
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Depletion region effect of highly efficient hole conductor free CH3NH3PbI3 perovskite solar cells.
    Aharon S; Gamliel S; El Cohen B; Etgar L
    Phys Chem Chem Phys; 2014 Jun; 16(22):10512-8. PubMed ID: 24736900
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Light Processing Enables Efficient Carbon-Based, All-Inorganic Planar CsPbIBr
    Zhang Q; Zhu W; Chen D; Zhang Z; Lin Z; Chang J; Zhang J; Zhang C; Hao Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):2997-3005. PubMed ID: 30596231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene).
    Jung EH; Jeon NJ; Park EY; Moon CS; Shin TJ; Yang TY; Noh JH; Seo J
    Nature; 2019 Mar; 567(7749):511-515. PubMed ID: 30918371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.