These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31657916)

  • 1. Improving the Accuracy of PCM-UAHF and PCM-UAKS Calculations Using Optimized Electrostatic Scaling Factors.
    Xu L; Coote ML
    J Chem Theory Comput; 2019 Dec; 15(12):6958-6967. PubMed ID: 31657916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methods To Improve the Calculations of Solvation Model Density Solvation Free Energies and Associated Aqueous p
    Xu L; Coote ML
    J Phys Chem A; 2019 Aug; 123(34):7430-7438. PubMed ID: 31382743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
    Marenich AV; Cramer CJ; Truhlar DG
    J Phys Chem B; 2009 May; 113(18):6378-96. PubMed ID: 19366259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SM6:  A Density Functional Theory Continuum Solvation Model for Calculating Aqueous Solvation Free Energies of Neutrals, Ions, and Solute-Water Clusters.
    Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2005 Nov; 1(6):1133-52. PubMed ID: 26631657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-Consistent Reaction Field Model for Aqueous and Nonaqueous Solutions Based on Accurate Polarized Partial Charges.
    Marenich AV; Olson RM; Kelly CP; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2007 Nov; 3(6):2011-33. PubMed ID: 26636198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction to Improving the Accuracy of PCM-UAHF and PCM-UAKS Calculations Using Optimized Electrostatic Scaling Factors.
    Xu L; Coote ML
    J Chem Theory Comput; 2020 Jan; 16(1):816-817. PubMed ID: 31859497
    [No Abstract]   [Full Text] [Related]  

  • 7. Improving Performance of the SMD Solvation Model: Bondi Radii Improve Predicted Aqueous Solvation Free Energies of Ions and p
    Mirzaei S; Ivanov MV; Timerghazin QK
    J Phys Chem A; 2019 Nov; 123(44):9498-9504. PubMed ID: 31318553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. pKa Calculation of Some Biologically Important Carbon Acids - An Assessment of Contemporary Theoretical Procedures.
    Ho J; Coote ML
    J Chem Theory Comput; 2009 Feb; 5(2):295-306. PubMed ID: 26610106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benchmarking the Conductor-like Polarizable Continuum Model (CPCM) for Aqueous Solvation Free Energies of Neutral and Ionic Organic Molecules.
    Takano Y; Houk KN
    J Chem Theory Comput; 2005 Jan; 1(1):70-7. PubMed ID: 26641117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calculating Free Energy Changes in Continuum Solvation Models.
    Ho J; Ertem MZ
    J Phys Chem B; 2016 Feb; 120(7):1319-29. PubMed ID: 26878566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cluster-Continuum Calculations of Hydration Free Energies of Anions and Group 12 Divalent Cations.
    Riccardi D; Guo HB; Parks JM; Gu B; Liang L; Smith JC
    J Chem Theory Comput; 2013 Jan; 9(1):555-69. PubMed ID: 26589054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum Chemical Calculation of p K
    Lian P; Johnston RC; Parks JM; Smith JC
    J Phys Chem A; 2018 May; 122(17):4366-4374. PubMed ID: 29633840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles calculation of pKa for cocaine, nicotine, neurotransmitters, and anilines in aqueous solution.
    Lu H; Chen X; Zhan CG
    J Phys Chem B; 2007 Sep; 111(35):10599-605. PubMed ID: 17691837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of polarizable continuum model and quantum mechanics/molecular mechanics solute electronic polarization: study of the optical and magnetic properties of diazines in water.
    Manzoni V; Lyra ML; Coutinho K; Canuto S
    J Chem Phys; 2011 Oct; 135(14):144103. PubMed ID: 22010694
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining Explicit Quantum Solvent with a Polarizable Continuum Model.
    Provorse Long MR; Isborn CM
    J Phys Chem B; 2017 Nov; 121(43):10105-10117. PubMed ID: 28992689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-scaled cavities in polarizable continuum model: determination of acid dissociation constants for platinum-amino acid complexes.
    Zimmermann T; Burda JV
    J Chem Phys; 2009 Oct; 131(13):135101. PubMed ID: 19814573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density-functional theory study of Iron(III) hydrolysis in aqueous solution.
    De Abreu HA; Guimarães L; Duarte HA
    J Phys Chem A; 2006 Jun; 110(24):7713-8. PubMed ID: 16774219
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solvent Dependence of (14)N Nuclear Magnetic Resonance Chemical Shielding Constants as a Test of the Accuracy of the Computed Polarization of Solute Electron Densities by the Solvent.
    Ribeiro RF; Marenich AV; Cramer CJ; Truhlar DG
    J Chem Theory Comput; 2009 Sep; 5(9):2284-300. PubMed ID: 26616615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge-dependent cavity radii for an accurate dielectric continuum model of solvation with emphasis on ions: aqueous solutes with oxo, hydroxo, amino, methyl, chloro, bromo, and fluoro functionalities.
    Ginovska B; Camaioni DM; Dupuis M; Schwerdtfeger CA; Gil Q
    J Phys Chem A; 2008 Oct; 112(42):10604-13. PubMed ID: 18816107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computing pKa Values in Different Solvents by Electrostatic Transformation.
    Rossini E; Netz RR; Knapp EW
    J Chem Theory Comput; 2016 Jul; 12(7):3360-9. PubMed ID: 27310667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.