These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31657940)

  • 21. Impacts of surface depletion on the plasmonic properties of doped semiconductor nanocrystals.
    Zandi O; Agrawal A; Shearer AB; Reimnitz LC; Dahlman CJ; Staller CM; Milliron DJ
    Nat Mater; 2018 Aug; 17(8):710-717. PubMed ID: 29988146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrical and Plasmonic Properties of Ligand-Free Sn(4+) -Doped In2 O3 (ITO) Nanocrystals.
    Jagadeeswararao M; Pal S; Nag A; Sarma DD
    Chemphyschem; 2016 Mar; 17(5):710-6. PubMed ID: 26710967
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials.
    Liu X; Swihart MT
    Chem Soc Rev; 2014 Jun; 43(11):3908-20. PubMed ID: 24566528
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifunctional Sn- and Fe-Codoped In2O3 Colloidal Nanocrystals: Plasmonics and Magnetism.
    Tandon B; Shanker GS; Nag A
    J Phys Chem Lett; 2014 Jul; 5(13):2306-11. PubMed ID: 26279551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-Mode Infrared Absorption by Segregating Dopants within Plasmonic Semiconductor Nanocrystals.
    Gibbs SL; Dean C; Saad J; Tandon B; Staller CM; Agrawal A; Milliron DJ
    Nano Lett; 2020 Oct; 20(10):7498-7505. PubMed ID: 32959661
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dipolar Ligands Tune Plasmonic Properties of Tin-Doped Indium Oxide Nanocrystals.
    Segui Barragan V; Roman BJ; Shubert-Zuleta SA; Berry MW; Celio H; Milliron DJ
    Nano Lett; 2023 Sep; 23(17):7983-7989. PubMed ID: 37624580
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Localized Surface Plasmon Resonance in Semiconductor Nanocrystals.
    Agrawal A; Cho SH; Zandi O; Ghosh S; Johns RW; Milliron DJ
    Chem Rev; 2018 Mar; 118(6):3121-3207. PubMed ID: 29400955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultranarrow Mid-infrared Quantum Plasmon Resonance of Self-Doped Silver Selenide Nanocrystal.
    Song H; Lee JH; Eom SY; Choi D; Jeong KS
    ACS Nano; 2023 Sep; 17(17):16895-16903. PubMed ID: 37579184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach.
    Yibi Y; Chen J; Xue J; Song J; Zeng H
    Sci Bull (Beijing); 2017 May; 62(10):693-699. PubMed ID: 36659440
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable surface plasmon resonance frequencies of monodisperse indium tin oxide nanoparticles by controlling composition, size, and morphology.
    Ma K; Zhou N; Yuan M; Li D; Yang D
    Nanoscale Res Lett; 2014; 9(1):547. PubMed ID: 25302059
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broadband Tunable Mid-infrared Plasmon Resonances in Cadmium Oxide Nanocrystals Induced by Size-Dependent Nonstoichiometry.
    Liu Z; Zhong Y; Shafei I; Jeong S; Wang L; Nguyen HT; Sun CJ; Li T; Chen J; Chen L; Losovyj Y; Gao X; Ma W; Ye X
    Nano Lett; 2020 Apr; 20(4):2821-2828. PubMed ID: 32105491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region.
    Kanehara M; Koike H; Yoshinaga T; Teranishi T
    J Am Chem Soc; 2009 Dec; 131(49):17736-7. PubMed ID: 19921844
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular mechanism of monodisperse colloidal tin-doped indium oxide nanocrystals by a hot-injection approach.
    Jin Y; Yi Q; Ren Y; Wang X; Ye Z
    Nanoscale Res Lett; 2013 Apr; 8(1):153. PubMed ID: 23547801
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals.
    Garcia G; Buonsanti R; Runnerstrom EL; Mendelsberg RJ; Llordes A; Anders A; Richardson TJ; Milliron DJ
    Nano Lett; 2011 Oct; 11(10):4415-20. PubMed ID: 21859093
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Wavelength Tunable Infrared Perfect Absorption in Plasmonic Nanocrystal Monolayers.
    Chang WJ; Sakotic Z; Ware A; Green AM; Roman BJ; Kim K; Truskett TM; Wasserman D; Milliron DJ
    ACS Nano; 2024 Jan; 18(1):972-982. PubMed ID: 38117550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface Depletion Layers in Plasmonic Metal Oxide Nanocrystals.
    Gibbs SL; Staller CM; Milliron DJ
    Acc Chem Res; 2019 Sep; 52(9):2516-2524. PubMed ID: 31424914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct Determination of Carrier Parameters in Indium Tin Oxide Nanocrystals.
    Gabbani A; Della Latta E; Mohan A; Scarperi A; Li X; Ruggeri M; Martini F; Biccari F; Kociak M; Geppi M; Borsacchi S; Pineider F
    ACS Nano; 2024 Jun; 18(23):15139-15153. PubMed ID: 38804721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Constructing functional mesostructured materials from colloidal nanocrystal building blocks.
    Milliron DJ; Buonsanti R; Llordes A; Helms BA
    Acc Chem Res; 2014 Jan; 47(1):236-46. PubMed ID: 24004254
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tunable light filtering by a Bragg mirror/heavily doped semiconducting nanocrystal composite.
    Kriegel I; Scotognella F
    Beilstein J Nanotechnol; 2015; 6():193-200. PubMed ID: 25671163
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High Mobility in Nanocrystal-Based Transparent Conducting Oxide Thin Films.
    Kim BH; Staller CM; Cho SH; Heo S; Garrison CE; Kim J; Milliron DJ
    ACS Nano; 2018 Apr; 12(4):3200-3208. PubMed ID: 29553705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.