These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31658249)

  • 1. Phase variation of a signal transduction system controls Clostridioides difficile colony morphology, motility, and virulence.
    Garrett EM; Sekulovic O; Wetzel D; Jones JB; Edwards AN; Vargas-Cuebas G; McBride SM; Tamayo R
    PLoS Biol; 2019 Oct; 17(10):e3000379. PubMed ID: 31658249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Regulatory Mechanisms Control the Production of CmrRST, an Atypical Signal Transduction System in Clostridioides difficile.
    Garrett EM; Mehra A; Sekulovic O; Tamayo R
    mBio; 2021 Feb; 13(1):e0296921. PubMed ID: 35164558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Flagellum and Toxin Phase Variation in Clostridioides difficile Ribotype 012 Isolates.
    Anjuwon-Foster BR; Maldonado-Vazquez N; Tamayo R
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735765
    [No Abstract]   [Full Text] [Related]  

  • 4. Flagellum and toxin phase variation impacts intestinal colonization and disease development in a mouse model of
    Trzilova D; Warren MAH; Gadda NC; Williams CL; Tamayo R
    Gut Microbes; 2022; 14(1):2038854. PubMed ID: 35192433
    [No Abstract]   [Full Text] [Related]  

  • 5. Rho factor mediates flagellum and toxin phase variation and impacts virulence in Clostridioides difficile.
    Trzilova D; Anjuwon-Foster BR; Torres Rivera D; Tamayo R
    PLoS Pathog; 2020 Aug; 16(8):e1008708. PubMed ID: 32785266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epidemic ribotypes of Clostridium (now Clostridioides) difficile are likely to be more virulent than non-epidemic ribotypes in animal models.
    Vitucci JC; Pulse M; Tabor-Simecka L; Simecka J
    BMC Microbiol; 2020 Feb; 20(1):27. PubMed ID: 32024477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutagenic analysis of the Clostridium difficile flagellar proteins, FliC and FliD, and their contribution to virulence in hamsters.
    Dingle TC; Mulvey GL; Armstrong GD
    Infect Immun; 2011 Oct; 79(10):4061-7. PubMed ID: 21788384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genetic switch controls the production of flagella and toxins in Clostridium difficile.
    Anjuwon-Foster BR; Tamayo R
    PLoS Genet; 2017 Mar; 13(3):e1006701. PubMed ID: 28346491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile.
    Purcell EB; McKee RW; Bordeleau E; Burrus V; Tamayo R
    J Bacteriol; 2016 Feb; 198(3):565-77. PubMed ID: 26598364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A conserved switch controls virulence, sporulation, and motility in C. difficile.
    DiCandia MA; Edwards AN; Alcaraz YB; Monteiro MP; Lee CD; Vargas Cuebas G; Bagchi P; McBride SM
    PLoS Pathog; 2024 May; 20(5):e1012224. PubMed ID: 38739653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phase Variation of Flagella and Toxins in Clostridioides difficile is Mediated by Selective Rho-dependent Termination.
    Warren Norris MAH; Plaskon DM; Tamayo R
    J Mol Biol; 2024 Mar; 436(6):168456. PubMed ID: 38278436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spo0A differentially regulates toxin production in evolutionarily diverse strains of Clostridium difficile.
    Mackin KE; Carter GP; Howarth P; Rood JI; Lyras D
    PLoS One; 2013; 8(11):e79666. PubMed ID: 24236153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase variation of Clostridium difficile virulence factors.
    Anjuwon-Foster BR; Tamayo R
    Gut Microbes; 2018 Jan; 9(1):76-83. PubMed ID: 28806147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor.
    Whittle MJ; Bilverstone TW; van Esveld RJ; Lücke AC; Lister MM; Kuehne SA; Minton NP
    Microbiol Spectr; 2022 Feb; 10(1):e0229521. PubMed ID: 35107319
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pleiotropic roles of Clostridium difficile sin locus.
    Girinathan BP; Ou J; Dupuy B; Govind R
    PLoS Pathog; 2018 Mar; 14(3):e1006940. PubMed ID: 29529083
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human intestinal enteroids as a model of
    Engevik MA; Danhof HA; Chang-Graham AL; Spinler JK; Engevik KA; Herrmann B; Endres BT; Garey KW; Hyser JM; Britton RA; Versalovic J
    Am J Physiol Gastrointest Liver Physiol; 2020 May; 318(5):G870-G888. PubMed ID: 32223302
    [No Abstract]   [Full Text] [Related]  

  • 17. The role of flagella in Clostridium difficile pathogenicity.
    Stevenson E; Minton NP; Kuehne SA
    Trends Microbiol; 2015 May; 23(5):275-82. PubMed ID: 25659185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of association between clinical outcome of Clostridium difficile infections, strain type, and virulence-associated phenotypes.
    Sirard S; Valiquette L; Fortier LC
    J Clin Microbiol; 2011 Dec; 49(12):4040-6. PubMed ID: 21956985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between phenotype, ribotype, and clinical disease in human Clostridium difficile isolates.
    Carlson PE; Walk ST; Bourgis AE; Liu MW; Kopliku F; Lo E; Young VB; Aronoff DM; Hanna PC
    Anaerobe; 2013 Dec; 24():109-16. PubMed ID: 23608205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production.
    Ahmed UKB; Shadid TM; Larabee JL; Ballard JD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33443122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.