BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31658260)

  • 1. Simple models of quantitative firing phenotypes in hippocampal neurons: Comprehensive coverage of intrinsic diversity.
    Venkadesh S; Komendantov AO; Wheeler DW; Hamilton DJ; Ascoli GA
    PLoS Comput Biol; 2019 Oct; 15(10):e1007462. PubMed ID: 31658260
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolving Simple Models of Diverse Intrinsic Dynamics in Hippocampal Neuron Types.
    Venkadesh S; Komendantov AO; Listopad S; Scott EO; De Jong K; Krichmar JL; Ascoli GA
    Front Neuroinform; 2018; 12():8. PubMed ID: 29593519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative firing pattern phenotyping of hippocampal neuron types.
    Komendantov AO; Venkadesh S; Rees CL; Wheeler DW; Hamilton DJ; Ascoli GA
    Sci Rep; 2019 Nov; 9(1):17915. PubMed ID: 31784578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting single spikes and spike patterns with the Hindmarsh-Rose model.
    de Lange E; Hasler M
    Biol Cybern; 2008 Nov; 99(4-5):349-60. PubMed ID: 19011923
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hippocampome.org 2.0 is a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits.
    Wheeler DW; Kopsick JD; Sutton N; Tecuatl C; Komendantov AO; Nadella K; Ascoli GA
    Elife; 2024 Feb; 12():. PubMed ID: 38345923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium coding and adaptive temporal computation in cortical pyramidal neurons.
    Wang XJ
    J Neurophysiol; 1998 Mar; 79(3):1549-66. PubMed ID: 9497431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory synaptic plasticity regulates pyramidal neuron spiking in the rodent hippocampus.
    Saraga F; Balena T; Wolansky T; Dickson CT; Woodin MA
    Neuroscience; 2008 Jul; 155(1):64-75. PubMed ID: 18562122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spike and burst coding in thalamocortical relay cells.
    Zeldenrust F; Chameau P; Wadman WJ
    PLoS Comput Biol; 2018 Feb; 14(2):e1005960. PubMed ID: 29432418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical coupling between model midbrain dopamine neurons: effects on firing pattern and synchrony.
    Komendantov AO; Canavier CC
    J Neurophysiol; 2002 Mar; 87(3):1526-41. PubMed ID: 11877524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Network bursting using experimentally constrained single compartment CA3 hippocampal neuron models with adaptation.
    Dur-e-Ahmad M; Nicola W; Campbell SA; Skinner FK
    J Comput Neurosci; 2012 Aug; 33(1):21-40. PubMed ID: 22131133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exact mean-field models for spiking neural networks with adaptation.
    Chen L; Campbell SA
    J Comput Neurosci; 2022 Nov; 50(4):445-469. PubMed ID: 35834100
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo.
    Sanchez-Aguilera A; Wheeler DW; Jurado-Parras T; Valero M; Nokia MS; Cid E; Fernandez-Lamo I; Sutton N; García-Rincón D; de la Prida LM; Ascoli GA
    PLoS Biol; 2021 May; 19(5):e3001213. PubMed ID: 33956790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hippocampome.org v2.0: a knowledge base enabling data-driven spiking neural network simulations of rodent hippocampal circuits.
    Wheeler DW; Kopsick JD; Sutton N; Tecuatl C; Komendantov AO; Nadella K; Ascoli GA
    bioRxiv; 2024 Jan; ():. PubMed ID: 37425693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-dependent effects of Na channel noise on neuronal burst generation.
    Rowat PF; Elson RC
    J Comput Neurosci; 2004; 16(2):87-112. PubMed ID: 14758060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus.
    Wheeler DW; White CM; Rees CL; Komendantov AO; Hamilton DJ; Ascoli GA
    Elife; 2015 Sep; 4():. PubMed ID: 26402459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silicon modeling of the Mihalaş-Niebur neuron.
    Folowosele F; Hamilton TJ; Etienne-Cummings R
    IEEE Trans Neural Netw; 2011 Dec; 22(12):1915-27. PubMed ID: 21990331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonlinear dynamic modeling of spike train transformations for hippocampal-cortical prostheses.
    Song D; Chan RH; Marmarelis VZ; Hampson RE; Deadwyler SA; Berger TW
    IEEE Trans Biomed Eng; 2007 Jun; 54(6 Pt 1):1053-66. PubMed ID: 17554824
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: Comparison and implementation.
    Augustin M; Ladenbauer J; Baumann F; Obermayer K
    PLoS Comput Biol; 2017 Jun; 13(6):e1005545. PubMed ID: 28644841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Statistical structure of neural spiking under non-Poissonian or other non-white stimulation.
    Schwalger T; Droste F; Lindner B
    J Comput Neurosci; 2015 Aug; 39(1):29-51. PubMed ID: 25936628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.