These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 31658411)
1. Climate change decreases the cooling effect from postfire albedo in boreal North America. Potter S; Solvik K; Erb A; Goetz SJ; Johnstone JF; Mack MC; Randerson JT; Román MO; Schaaf CL; Turetsky MR; Veraverbeke S; Walker XJ; Wang Z; Massey R; Rogers BM Glob Chang Biol; 2020 Mar; 26(3):1592-1607. PubMed ID: 31658411 [TBL] [Abstract][Full Text] [Related]
2. Dispersal limitation drives successional pathways in Central Siberian forests under current and intensified fire regimes. Tautenhahn S; Lichstein JW; Jung M; Kattge J; Bohlman SA; Heilmeier H; Prokushkin A; Kahl A; Wirth C Glob Chang Biol; 2016 Jun; 22(6):2178-97. PubMed ID: 26649652 [TBL] [Abstract][Full Text] [Related]
3. Effects of climate and fire on short-term vegetation recovery in the boreal larch forests of Northeastern China. Liu Z Sci Rep; 2016 Nov; 6():37572. PubMed ID: 27857204 [TBL] [Abstract][Full Text] [Related]
4. Boreal forests, aerosols and the impacts on clouds and climate. Spracklen DV; Bonn B; Carslaw KS Philos Trans A Math Phys Eng Sci; 2008 Dec; 366(1885):4613-26. PubMed ID: 18826917 [TBL] [Abstract][Full Text] [Related]
5. Early spring post-fire snow albedo dynamics in high latitude boreal forests using Landsat-8 OLI data. Wang Z; Erb AM; Schaaf CB; Sun Q; Liu Y; Yang Y; Shuai Y; Casey KA; Román MO Remote Sens Environ; 2016 Nov; 185():71-83. PubMed ID: 29769751 [TBL] [Abstract][Full Text] [Related]
6. Strong cooling induced by stand-replacing fires through albedo in Siberian larch forests. Chen D; Loboda TV; He T; Zhang Y; Liang S Sci Rep; 2018 Mar; 8(1):4821. PubMed ID: 29555985 [TBL] [Abstract][Full Text] [Related]
7. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China]. Li S; Wu ZW; Liang Y; He HS Ying Yong Sheng Tai Xue Bao; 2017 Jan; 28(1):210-218. PubMed ID: 29749205 [TBL] [Abstract][Full Text] [Related]
8. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Baltzer JL; Day NJ; Walker XJ; Greene D; Mack MC; Alexander HD; Arseneault D; Barnes J; Bergeron Y; Boucher Y; Bourgeau-Chavez L; Brown CD; Carrière S; Howard BK; Gauthier S; Parisien MA; Reid KA; Rogers BM; Roland C; Sirois L; Stehn S; Thompson DK; Turetsky MR; Veraverbeke S; Whitman E; Yang J; Johnstone JF Proc Natl Acad Sci U S A; 2021 Nov; 118(45):. PubMed ID: 34697246 [TBL] [Abstract][Full Text] [Related]
9. The impact of boreal forest fire on climate warming. Randerson JT; Liu H; Flanner MG; Chambers SD; Jin Y; Hess PG; Pfister G; Mack MC; Treseder KK; Welp LR; Chapin FS; Harden JW; Goulden ML; Lyons E; Neff JC; Schuur EA; Zender CS Science; 2006 Nov; 314(5802):1130-2. PubMed ID: 17110574 [TBL] [Abstract][Full Text] [Related]
10. [Simulating the effects of climate change and fire disturbance on aboveground biomass of boreal forests in the Great Xing'an Mountains, Northeast China]. Luo X; Wang YL; Zhang JQ Ying Yong Sheng Tai Xue Bao; 2018 Mar; 29(3):713-724. PubMed ID: 29722211 [TBL] [Abstract][Full Text] [Related]
11. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Betts RA Nature; 2000 Nov; 408(6809):187-90. PubMed ID: 11089969 [TBL] [Abstract][Full Text] [Related]
13. [Effects of climate change, fire and harvest on carbon storage of boreal forests in the Great Xing'an Mountains, China.]. Huang C; He HS; Liang Y; Wu ZW Ying Yong Sheng Tai Xue Bao; 2018 Jul; 29(7):2088-2100. PubMed ID: 30039645 [TBL] [Abstract][Full Text] [Related]
14. The climate, the fuel and the land use: Long-term regional variability of biomass burning in boreal forests. Molinari C; Lehsten V; Blarquez O; Carcaillet C; Davis BAS; Kaplan JO; Clear J; Bradshaw RHW Glob Chang Biol; 2018 Oct; 24(10):4929-4945. PubMed ID: 29959810 [TBL] [Abstract][Full Text] [Related]
15. Potential changes in forest composition could reduce impacts of climate change on boreal wildfires. Terrier A; Girardin MP; Périé C; Legendre P; Bergeron Y Ecol Appl; 2013 Jan; 23(1):21-35. PubMed ID: 23495633 [TBL] [Abstract][Full Text] [Related]
16. Climatic and land cover influences on the spatiotemporal dynamics of Holocene boreal fire regimes. Barrett CM; Kelly R; Higuera PE; Hu FS Ecology; 2013 Feb; 94(2):389-402. PubMed ID: 23691658 [TBL] [Abstract][Full Text] [Related]
17. Radiative forcing impacts of boreal forest biofuels: a scenario study for Norway in light of albedo. Bright RM; Strømman AH; Peters GP Environ Sci Technol; 2011 Sep; 45(17):7570-80. PubMed ID: 21797227 [TBL] [Abstract][Full Text] [Related]
18. Control of the multimillennial wildfire size in boreal North America by spring climatic conditions. Ali AA; Blarquez O; Girardin MP; Hély C; Tinquaut F; El Guellab A; Valsecchi V; Terrier A; Bremond L; Genries A; Gauthier S; Bergeron Y Proc Natl Acad Sci U S A; 2012 Dec; 109(51):20966-70. PubMed ID: 23213207 [TBL] [Abstract][Full Text] [Related]
19. Ten years of vegetation assembly after a North American mega fire. Abella SR; Fornwalt PJ Glob Chang Biol; 2015 Feb; 21(2):789-802. PubMed ID: 25200376 [TBL] [Abstract][Full Text] [Related]
20. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga. Erni S; Arseneault D; Parisien MA; Bégin Y Glob Chang Biol; 2017 Mar; 23(3):1152-1166. PubMed ID: 27514018 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]