These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31658639)

  • 1. Effects of Membrane and Biological Target on the Structural and Allosteric Properties of Recoverin: A Computational Approach.
    Borsatto A; Marino V; Abrusci G; Lattanzi G; Dell'Orco D
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31658639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Recognition of Rhodopsin Kinase GRK1 and Recoverin Is Tuned by Switching Intra- and Intermolecular Electrostatic Interactions.
    Abbas S; Marino V; Dell'Orco D; Koch KW
    Biochemistry; 2019 Oct; 58(43):4374-4385. PubMed ID: 31621304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bringing the Ca
    Marino V; Riva M; Zamboni D; Koch KW; Dell'Orco D
    Open Biol; 2021 Jan; 11(1):200346. PubMed ID: 33401992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of rhodopsin kinase regulation by recoverin.
    Komolov KE; Senin II; Kovaleva NA; Christoph MP; Churumova VA; Grigoriev II; Akhtar M; Philippov PP; Koch KW
    J Neurochem; 2009 Jul; 110(1):72-9. PubMed ID: 19457073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental Insight into the Structural and Functional Roles of the 'Black' and 'Gray' Clusters in Recoverin, a Calcium Binding Protein with Four EF-Hand Motifs.
    Permyakov SE; Vologzhannikova AS; Nemashkalova EL; Kazakov AS; Denesyuk AI; Denessiouk K; Baksheeva VE; Zamyatnin AA; Zernii EY; Uversky VN; Permyakov EA
    Molecules; 2019 Jul; 24(13):. PubMed ID: 31288444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional restoration of the Ca2+-myristoyl switch in a recoverin mutant.
    Senin II; Vaganova SA; Weiergräber OH; Ergorov NS; Philippov PP; Koch KW
    J Mol Biol; 2003 Jul; 330(2):409-18. PubMed ID: 12823978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of the recoverin C-terminal segment in recognition of the target enzyme rhodopsin kinase.
    Zernii EY; Komolov KE; Permyakov SE; Kolpakova T; Dell'orco D; Poetzsch A; Knyazeva EL; Grigoriev II; Permyakov EA; Senin II; Philippov PP; Koch KW
    Biochem J; 2011 Apr; 435(2):441-50. PubMed ID: 21299498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and calcium-binding studies of a recoverin mutant (E85Q) in an allosteric intermediate state.
    Ames JB; Hamasaki N; Molchanova T
    Biochemistry; 2002 May; 41(18):5776-87. PubMed ID: 11980481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amino acid residues in GRK1/GRK7 responsible for interaction with S-modulin/recoverin.
    Torisawa A; Arinobu D; Tachibanaki S; Kawamura S
    Photochem Photobiol; 2008; 84(4):823-30. PubMed ID: 18266817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+-dependent conformational changes in the neuronal Ca2+-sensor recoverin probed by the fluorescent dye Alexa647.
    Gensch T; Komolov KE; Senin II; Philippov PP; Koch KW
    Proteins; 2007 Feb; 66(2):492-9. PubMed ID: 17078090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for calcium-induced inhibition of rhodopsin kinase by recoverin.
    Ames JB; Levay K; Wingard JN; Lusin JD; Slepak VZ
    J Biol Chem; 2006 Dec; 281(48):37237-45. PubMed ID: 17020884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amino-terminal myristoylation induces cooperative calcium binding to recoverin.
    Ames JB; Porumb T; Tanaka T; Ikura M; Stryer L
    J Biol Chem; 1995 Mar; 270(9):4526-33. PubMed ID: 7876221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular mechanics of calcium-myristoyl switches.
    Ames JB; Ishima R; Tanaka T; Gordon JI; Stryer L; Ikura M
    Nature; 1997 Sep; 389(6647):198-202. PubMed ID: 9296500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of the contribution of the myristoyl group and hydrophobic amino acids of recoverin on its dynamics of binding to lipid monolayers.
    Desmeules P; Penney SE; Desbat B; Salesse C
    Biophys J; 2007 Sep; 93(6):2069-82. PubMed ID: 17526567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure, topology, and dynamics of myristoylated recoverin bound to phospholipid bilayers.
    Valentine KG; Mesleh MF; Opella SJ; Ikura M; Ames JB
    Biochemistry; 2003 Jun; 42(21):6333-40. PubMed ID: 12767213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of a Myristoylated Protein to the Lipid Membrane Influenced by Interactions with the Polar Head Group Region.
    Brand I; Matyszewska D; Koch KW
    Langmuir; 2018 Nov; 34(46):14022-14032. PubMed ID: 30360613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolutionary-Conserved Allosteric Properties of Three Neuronal Calcium Sensor Proteins.
    Marino V; Dell'Orco D
    Front Mol Neurosci; 2019; 12():50. PubMed ID: 30899213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulatory function of the C-terminal segment of guanylate cyclase-activating protein 2.
    Zernii EY; Grigoriev II; Nazipova AA; Scholten A; Kolpakova TV; Zinchenko DV; Kazakov AS; Senin II; Permyakov SE; Dell'Orco D; Philippov PP; Koch KW
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1325-37. PubMed ID: 26001899
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational transition pathway in the allosteric process of calcium-induced recoverin: molecular dynamics simulations.
    Li JL; Geng CY; Bu Y; Huang XR; Sun CC
    J Comput Chem; 2009 May; 30(7):1135-45. PubMed ID: 18942727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy.
    Desmeules P; Grandbois M; Bondarenko VA; Yamazaki A; Salesse C
    Biophys J; 2002 Jun; 82(6):3343-50. PubMed ID: 12023256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.