These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31658639)

  • 41. Amino acid sequences of two immune-dominant epitopes of recoverin are involved in Ca2+/recoverin-dependent inhibition of phosphorylation of rhodopsin.
    Senin II; Tikhomirova NK; Churumova VA; Grigoriev II; Kolpakova TA; Zinchenko DV; Philippov PP; Zernii EY
    Biochemistry (Mosc); 2011 Mar; 76(3):332-8. PubMed ID: 21568868
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structure and membrane-targeting mechanism of retinal Ca2+-binding proteins, recoverin and GCAP-2.
    Ames JB; Ikura M
    Adv Exp Med Biol; 2002; 514():333-48. PubMed ID: 12596931
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Portrait of a myristoyl switch protein.
    Ames JB; Tanaka T; Stryer L; Ikura M
    Curr Opin Struct Biol; 1996 Aug; 6(4):432-8. PubMed ID: 8794166
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Conformational Selection in a Protein-Protein Interaction Revealed by Dynamic Pathway Analysis.
    Chakrabarti KS; Agafonov RV; Pontiggia F; Otten R; Higgins MK; Schertler GFX; Oprian DD; Kern D
    Cell Rep; 2016 Jan; 14(1):32-42. PubMed ID: 26725117
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Regulation of the methylation status of G protein-coupled receptor kinase 1 (rhodopsin kinase).
    Kutuzov MA; Andreeva AV; Bennett N
    Cell Signal; 2012 Dec; 24(12):2259-67. PubMed ID: 22846544
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Core mutations that promote the calcium-induced allosteric transition of bovine recoverin.
    Baldwin AN; Ames JB
    Biochemistry; 1998 Dec; 37(50):17408-19. PubMed ID: 9860856
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A highly conserved cysteine of neuronal calcium-sensing proteins controls cooperative binding of Ca2+ to recoverin.
    Ranaghan MJ; Kumar RP; Chakrabarti KS; Buosi V; Kern D; Oprian DD
    J Biol Chem; 2013 Dec; 288(50):36160-7. PubMed ID: 24189072
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Regulation of mammalian cone phototransduction by recoverin and rhodopsin kinase.
    Sakurai K; Chen J; Khani SC; Kefalov VJ
    J Biol Chem; 2015 Apr; 290(14):9239-50. PubMed ID: 25673692
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Neuronal Calcium Sensor-1 Binds the D2 Dopamine Receptor and G-protein-coupled Receptor Kinase 1 (GRK1) Peptides Using Different Modes of Interactions.
    Pandalaneni S; Karuppiah V; Saleem M; Haynes LP; Burgoyne RD; Mayans O; Derrick JP; Lian LY
    J Biol Chem; 2015 Jul; 290(30):18744-56. PubMed ID: 25979333
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Oxidation mimicking substitution of conservative cysteine in recoverin suppresses its membrane association.
    Permyakov SE; Zernii EY; Knyazeva EL; Denesyuk AI; Nazipova AA; Kolpakova TV; Zinchenko DV; Philippov PP; Permyakov EA; Senin II
    Amino Acids; 2012 Apr; 42(4):1435-42. PubMed ID: 21344177
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structural effects of Mg²⁺ on the regulatory states of three neuronal calcium sensors operating in vertebrate phototransduction.
    Marino V; Sulmann S; Koch KW; Dell'Orco D
    Biochim Biophys Acta; 2015 Sep; 1853(9):2055-65. PubMed ID: 25447547
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Calcium-myristoyl protein switch.
    Zozulya S; Stryer L
    Proc Natl Acad Sci U S A; 1992 Dec; 89(23):11569-73. PubMed ID: 1454850
    [TBL] [Abstract][Full Text] [Related]  

  • 53. N-myristoylation of recoverin enhances its efficiency as an inhibitor of rhodopsin kinase.
    Senin II; Zargarov AA; Alekseev AM; Gorodovikova EN; Lipkin VM; Philippov PP
    FEBS Lett; 1995 Nov; 376(1-2):87-90. PubMed ID: 8521974
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Double electron-electron resonance probes Ca²⁺-induced conformational changes and dimerization of recoverin.
    Myers WK; Xu X; Li C; Lagerstedt JO; Budamagunta MS; Voss JC; Britt RD; Ames JB
    Biochemistry; 2013 Aug; 52(34):5800-8. PubMed ID: 23906368
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation.
    Chen CK; Woodruff ML; Fain GL
    J Gen Physiol; 2015 Mar; 145(3):213-24. PubMed ID: 25667411
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Autophosphorylation and ADP regulate the Ca2+-dependent interaction of recoverin with rhodopsin kinase.
    Satpaev DK; Chen CK; Scotti A; Simon MI; Hurley JB; Slepak VZ
    Biochemistry; 1998 Jul; 37(28):10256-62. PubMed ID: 9665733
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Monitoring calcium-induced conformational changes in recoverin by electrospray mass spectrometry.
    Neubert TA; Walsh KA; Hurley JB; Johnson RS
    Protein Sci; 1997 Apr; 6(4):843-50. PubMed ID: 9098894
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Phosphatidylserine Allows Observation of the Calcium-Myristoyl Switch of Recoverin and Its Preferential Binding.
    Calvez P; Schmidt TF; Cantin L; Klinker K; Salesse C
    J Am Chem Soc; 2016 Oct; 138(41):13533-13540. PubMed ID: 27689444
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of the protein myristoylation on the structure of a model cell membrane in a protein bound state.
    Brand I; Koch KW
    Bioelectrochemistry; 2018 Dec; 124():13-21. PubMed ID: 29990597
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recoverin binds exclusively to an amphipathic peptide at the N terminus of rhodopsin kinase, inhibiting rhodopsin phosphorylation without affecting catalytic activity of the kinase.
    Higgins MK; Oprian DD; Schertler GF
    J Biol Chem; 2006 Jul; 281(28):19426-32. PubMed ID: 16675451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.