These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 31658645)

  • 1. Traversability Assessment and Trajectory Planning of Unmanned Ground Vehicles with Suspension Systems on Rough Terrain.
    Zhang K; Yang Y; Fu M; Wang M
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31658645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR.
    Sánchez M; Morales J; Martínez JL
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991950
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pose Prediction of Autonomous Full Tracked Vehicle Based on 3D Sensor.
    Ni T; Li W; Zhang H; Yang H; Kong Z
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31766765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traversability analysis with vision and terrain probing for safe legged robot navigation.
    Haddeler G; Chuah MYM; You Y; Chan J; Adiwahono AH; Yau WY; Chew CM
    Front Robot AI; 2022; 9():887910. PubMed ID: 36071857
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online Aerial Terrain Mapping for Ground Robot Navigation.
    Peterson J; Chaudhry H; Abdelatty K; Bird J; Kochersberger K
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29461496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Traversable Region Detection and Tracking for a Sparse 3D Laser Scanner for Off-Road Environments Using Range Images.
    An J
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447744
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.
    Morales J; Castelo I; Serra R; Lima PU; Basiri M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Navigating a mobile robot by a traversability field histogram.
    Ye C
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):361-72. PubMed ID: 17416164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactive Navigation on Natural Environments by Continuous Classification of Ground Traversability.
    Martínez JL; Morales J; Sánchez M; Morán M; Reina AJ; Fernández-Lozano JJ
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33182808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary algorithm based offline/online path planner for UAV navigation.
    Nikolos IK; Valavanis KP; Tsourveloudis NC; Kostaras AN
    IEEE Trans Syst Man Cybern B Cybern; 2003; 33(6):898-912. PubMed ID: 18238242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Study on Dynamic Motion Planning for Autonomous Vehicles Based on Nonlinear Vehicle Model.
    Tang X; Li B; Du H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling of slip rate-dependent traversability for path planning of wheeled mobile robot in sandy terrain.
    Sakayori G; Ishigami G
    Front Robot AI; 2024; 11():1320261. PubMed ID: 38332951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning Risk-aware Costmaps for Traversability in Challenging Environments.
    Fan DD; Agha-Mohammadi AA; Theodorou EA
    IEEE Robot Autom Lett; 2022 Jan; 7(1):279-286. PubMed ID: 35005225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning-Based Methods of Perception and Navigation for Ground Vehicles in Unstructured Environments: A Review.
    Guastella DC; Muscato G
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33375609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatically Annotated Dataset of a Ground Mobile Robot in Natural Environments via Gazebo Simulations.
    Sánchez M; Morales J; Martínez JL; Fernández-Lozano JJ; García-Cerezo A
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898100
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on Traversability Risk Assessments for Autonomous Ground Vehicles: Methods and Metrics.
    Benrabah M; Orou Mousse C; Randriamiarintsoa E; Chapuis R; Aufrère R
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous robotic exploration with simultaneous environment and traversability models learning.
    Prágr M; Bayer J; Faigl J
    Front Robot AI; 2022; 9():910113. PubMed ID: 36274911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GNSS/LiDAR-Based Navigation of an Aerial Robot in Sparse Forests.
    Chiella ACB; Machado HN; Teixeira BOS; Pereira GAS
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Road Profile Estimation Using a 3D Sensor and Intelligent Vehicle.
    Ni T; Li W; Zhao D; Kong Z
    Sensors (Basel); 2020 Jun; 20(13):. PubMed ID: 32630057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. OctoPath: An OcTree-Based Self-Supervised Learning Approach to Local Trajectory Planning for Mobile Robots.
    Trăsnea B; Ginerică C; Zaha M; Măceşanu G; Pozna C; Grigorescu S
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34067237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.