BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 31658648)

  • 1. A Facile Method for Preparing UiO-66 Encapsulated Ru Catalyst and its Application in Plasma-Assisted CO
    Xu W; Dong M; Di L; Zhang X
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31658648
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The assessment of honeycomb structure UiO-66 and amino functionalized UiO-66 metal-organic frameworks to modify the morphology and performance of Pebax®1657-based gas separation membranes for CO
    Sarmadi R; Salimi M; Pirouzfar V
    Environ Sci Pollut Res Int; 2020 Nov; 27(32):40618-40632. PubMed ID: 32671703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyethyleneimine-Modified UiO-66-NH
    Zhu J; Wu L; Bu Z; Jie S; Li BG
    ACS Omega; 2019 Feb; 4(2):3188-3197. PubMed ID: 31459536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino-functionalizing Ce-based MOF for enhanced CO2 adsorption and selectivity.
    Fernando JSR; Asaithambi SS; Chavan SM
    Chempluschem; 2024 May; ():e202400107. PubMed ID: 38708570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot synthesis of binary metal organic frameworks (HKUST-1 and UiO-66) for enhanced adsorptive removal of water contaminants.
    Azhar MR; Abid HR; Sun H; Periasamy V; Tadé MO; Wang S
    J Colloid Interface Sci; 2017 Mar; 490():685-694. PubMed ID: 27940035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Zr-Based MOF-545 Metal-Organic Framework Loaded with Highly Dispersed Small Size Ni Nanoparticles for CO
    Chen H; Brubach JB; Tran NH; Robinson AL; Romdhane FB; Frégnaux M; Penas-Hidalgo F; Solé-Daura A; Mialane P; Fontecave M; Dolbecq A; Mellot-Draznieks C
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12509-12520. PubMed ID: 38415586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of UiO-66-Sal-Cu(OH)
    Moghadaskhou F; Tadjarodi A; Mollahosseini A; Maleki A
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):4021-4032. PubMed ID: 36633596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boosting Catalysis of Pd Nanoparticles in MOFs by Pore Wall Engineering: The Roles of Electron Transfer and Adsorption Energy.
    Chen D; Yang W; Jiao L; Li L; Yu SH; Jiang HL
    Adv Mater; 2020 Jul; 32(30):e2000041. PubMed ID: 32529707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co
    Ashtiani S; Khoshnamvand M; Shaliutina-Kolešová A; Bouša D; Sofer Z; Friess K
    Chemosphere; 2020 Sep; 255():126966. PubMed ID: 32416392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic Catalysis of Ruthenium Nanoparticles and Polyoxometalate Integrated Within Single UiO-66 Microcrystals for Boosting the Efficiency of Methyl Levulinate to γ-Valerolactone.
    Cai X; Xu Q; Tu G; Fu Y; Zhang F; Zhu W
    Front Chem; 2019; 7():42. PubMed ID: 30775365
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification Effects of B₂O₃ on The Structure and Catalytic Activity of WO₃-UiO-66 Catalyst.
    Yang X; Wu N; Miao Y; Li H
    Nanomaterials (Basel); 2018 Sep; 8(10):. PubMed ID: 30274392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of scale, activation solvents, and aged conditions on gas adsorption properties of UiO-66.
    Ahmadijokani F; Ahmadipouya S; Molavi H; Rezakazemi M; Aminabhavi TM; Arjmand M
    J Environ Manage; 2020 Nov; 274():111155. PubMed ID: 32805472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Operando study of palladium nanoparticles inside UiO-67 MOF for catalytic hydrogenation of hydrocarbons.
    Bugaev AL; Guda AA; Lomachenko KA; Kamyshova EG; Soldatov MA; Kaur G; Øien-Ødegaard S; Braglia L; Lazzarini A; Manzoli M; Bordiga S; Olsbye U; Lillerud KP; Soldatov AV; Lamberti C
    Faraday Discuss; 2018 Sep; 208(0):287-306. PubMed ID: 29796547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal-Organic Gel Material Based on UiO-66-NH2 Nanoparticles for Improved Adsorption and Conversion of Carbon Dioxide.
    Liu L; Zhang J; Fang H; Chen L; Su CY
    Chem Asian J; 2016 Aug; 11(16):2278-83. PubMed ID: 27332669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Monodispersed Spherical Zr-Based Metal-Organic Framework Catalyst, Pt/Au@Pd@UIO-66, Comprising an Au@Pd Core-Shell Encapsulated in a UIO-66 Center and Its Highly Selective CO
    Zheng Z; Xu H; Xu Z; Ge J
    Small; 2018 Feb; 14(5):. PubMed ID: 29205859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile Preparation of Pd/UiO-66-v for the Conversion of Furfuryl Alcohol to Tetrahydrofurfuryl Alcohol under Mild Conditions in Water.
    Yang Y; Deng D; Sui D; Xie Y; Li D; Duan Y
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31795102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and scalable synthesis of uniform zirconium-, hafnium-based metal-organic framework nanocrystals.
    He T; Xu X; Ni B; Wang H; Long Y; Hu W; Wang X
    Nanoscale; 2017 Dec; 9(48):19209-19215. PubMed ID: 29188246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Catalytic Activity of C
    Zheng DY; Zhou XM; Mutyala S; Huang XC
    Chemistry; 2018 Dec; 24(72):19141-19145. PubMed ID: 30204279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly Dispersed Ni Catalyst on Metal-Organic Framework-Derived Porous Hydrous Zirconia for CO
    Zeng L; Wang Y; Li Z; Song Y; Zhang J; Wang J; He X; Wang C; Lin W
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17436-17442. PubMed ID: 32195562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pt@UiO-66 heterostructures for highly selective detection of hydrogen peroxide with an extended linear range.
    Xu Z; Yang L; Xu C
    Anal Chem; 2015 Mar; 87(6):3438-44. PubMed ID: 25700026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.