These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 31658732)

  • 1. Efficacy of Cell-Based Therapies for Traumatic Brain Injuries.
    Chrostek MR; Fellows EG; Guo WL; Swanson WJ; Crane AT; Cheeran MC; Low WC; Grande AW
    Brain Sci; 2019 Oct; 9(10):. PubMed ID: 31658732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficacy of stem cell-based therapies for stroke.
    Chrostek MR; Fellows EG; Crane AT; Grande AW; Low WC
    Brain Res; 2019 Nov; 1722():146362. PubMed ID: 31381876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propranolol and Mesenchymal Stromal Cells Combine to Treat Traumatic Brain Injury.
    Kota DJ; Prabhakara KS; van Brummen AJ; Bedi S; Xue H; DiCarlo B; Cox CS; Olson SD
    Stem Cells Transl Med; 2016 Jan; 5(1):33-44. PubMed ID: 26586775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesenchymal Stem Cell-Induced Anti-Neuroinflammation Against Traumatic Brain Injury.
    Cozene B; Sadanandan N; Farooq J; Kingsbury C; Park YJ; Wang ZJ; Moscatello A; Saft M; Cho J; Gonzales-Portillo B; Borlongan CV
    Cell Transplant; 2021; 30():9636897211035715. PubMed ID: 34559583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigational agents for treatment of traumatic brain injury.
    Xiong Y; Zhang Y; Mahmood A; Chopp M
    Expert Opin Investig Drugs; 2015 Jun; 24(6):743-60. PubMed ID: 25727893
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neuroprotective and neurorestorative effects of thymosin β4 treatment following experimental traumatic brain injury.
    Xiong Y; Mahmood A; Meng Y; Zhang Y; Zhang ZG; Morris DC; Chopp M
    Ann N Y Acad Sci; 2012 Oct; 1270():51-8. PubMed ID: 23050817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new avenue for lithium: intervention in traumatic brain injury.
    Leeds PR; Yu F; Wang Z; Chiu CT; Zhang Y; Leng Y; Linares GR; Chuang DM
    ACS Chem Neurosci; 2014 Jun; 5(6):422-33. PubMed ID: 24697257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Mesenchymal Stem Cells Act Multipotential in Traumatic Brain Injury?
    Dehghanian F; Soltani Z; Khaksari M
    J Mol Neurosci; 2020 May; 70(5):677-688. PubMed ID: 31897971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emerging treatments for traumatic brain injury.
    Xiong Y; Mahmood A; Chopp M
    Expert Opin Emerg Drugs; 2009 Mar; 14(1):67-84. PubMed ID: 19249984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wnt3a, a Protein Secreted by Mesenchymal Stem Cells Is Neuroprotective and Promotes Neurocognitive Recovery Following Traumatic Brain Injury.
    Zhao Y; Gibb SL; Zhao J; Moore AN; Hylin MJ; Menge T; Xue H; Baimukanova G; Potter D; Johnson EM; Holcomb JB; Cox CS; Dash PK; Pati S
    Stem Cells; 2016 May; 34(5):1263-72. PubMed ID: 26840479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ectoderm-derived frontal bone mesenchymal stem cells promote traumatic brain injury recovery by alleviating neuroinflammation and glutamate excitotoxicity partially via FGF1.
    Qin Q; Wang T; Xu Z; Liu S; Zhang H; Du Z; Wang J; Wang Y; Wang Z; Yuan S; Wu J; He W; Wang C; Yan X; Wang Y; Jiang X
    Stem Cell Res Ther; 2022 Jul; 13(1):341. PubMed ID: 35883153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesenchymal stem cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration.
    Xiong Y; Mahmood A; Chopp M
    Neural Regen Res; 2024 Jan; 19(1):49-54. PubMed ID: 37488843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplantation of RADA16-BDNF peptide scaffold with human umbilical cord mesenchymal stem cells forced with CXCR4 and activated astrocytes for repair of traumatic brain injury.
    Shi W; Huang CJ; Xu XD; Jin GH; Huang RQ; Huang JF; Chen YN; Ju SQ; Wang Y; Shi YW; Qin JB; Zhang YQ; Liu QQ; Wang XB; Zhang XH; Chen J
    Acta Biomater; 2016 Nov; 45():247-261. PubMed ID: 27592818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2+CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury.
    Nichols JE; Niles JA; DeWitt D; Prough D; Parsley M; Vega S; Cantu A; Lee E; Cortiella J
    Stem Cell Res Ther; 2013 Jan; 4(1):3. PubMed ID: 23290300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury.
    Zhang Y; Chopp M; Meng Y; Katakowski M; Xin H; Mahmood A; Xiong Y
    J Neurosurg; 2015 Apr; 122(4):856-67. PubMed ID: 25594326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-Based Therapies for Traumatic Brain Injury: Therapeutic Treatments and Clinical Trials.
    Bonilla C; Zurita M
    Biomedicines; 2021 Jun; 9(6):. PubMed ID: 34200905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Advances in Stem Cell Therapies to Address Neuroinflammation, Stem Cell Survival, and the Need for Rehabilitative Therapies to Treat Traumatic Brain Injuries.
    Bjorklund GR; Anderson TR; Stabenfeldt SE
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33671305
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MiR-17-92 Cluster-Enriched Exosomes Derived from Human Bone Marrow Mesenchymal Stromal Cells Improve Tissue and Functional Recovery in Rats after Traumatic Brain Injury.
    Zhang Y; Zhang Y; Chopp M; Pang H; Zhang ZG; Mahmood A; Xiong Y
    J Neurotrauma; 2021 Jun; 38(11):1535-1550. PubMed ID: 33787364
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 12.