BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31658746)

  • 21. Engineering RuBisCO-based shunt for improved cadaverine production in Escherichia coli.
    Feng J; Han Y; Xu S; Liao Y; Wang Y; Xu S; Li H; Wang X; Chen K
    Bioresour Technol; 2024 Apr; 398():130529. PubMed ID: 38437969
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Autotrophic growth of
    Ben Nissan R; Milshtein E; Pahl V; de Pins B; Jona G; Levi D; Yung H; Nir N; Ezra D; Gleizer S; Link H; Noor E; Milo R
    Elife; 2024 Feb; 12():. PubMed ID: 38381041
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A map of the rubisco biochemical landscape.
    Prywes N; Philips NR; Oltrogge LM; Lindner S; Candace Tsai YC; de Pins B; Cowan AE; Taylor-Kearney LJ; Chang HA; Hall LN; Bellieny-Rabelo D; Nisonoff HM; Weissman RF; Flamholz AI; Ding D; Bhatt AY; Shih PM; Mueller-Cajar O; Milo R; Savage DF
    bioRxiv; 2024 Apr; ():. PubMed ID: 38645011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional reconstitution of a bacterial CO
    Flamholz AI; Dugan E; Blikstad C; Gleizer S; Ben-Nissan R; Amram S; Antonovsky N; Ravishankar S; Noor E; Bar-Even A; Milo R; Savage DF
    Elife; 2020 Oct; 9():. PubMed ID: 33084575
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Small subunits can determine enzyme kinetics of tobacco Rubisco expressed in Escherichia coli.
    Lin MT; Stone WD; Chaudhari V; Hanson MR
    Nat Plants; 2020 Oct; 6(10):1289-1299. PubMed ID: 32929197
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary trends in RuBisCO kinetics and their co-evolution with CO
    Iñiguez C; Capó-Bauçà S; Niinemets Ü; Stoll H; Aguiló-Nicolau P; Galmés J
    Plant J; 2020 Feb; 101(4):897-918. PubMed ID: 31820505
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Conversion of Escherichia coli to Generate All Biomass Carbon from CO
    Gleizer S; Ben-Nissan R; Bar-On YM; Antonovsky N; Noor E; Zohar Y; Jona G; Krieger E; Shamshoum M; Bar-Even A; Milo R
    Cell; 2019 Nov; 179(6):1255-1263.e12. PubMed ID: 31778652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Perspectives on improving crop Rubisco by directed evolution.
    Gionfriddo M; Rhodes T; Whitney SM
    Semin Cell Dev Biol; 2024 Mar; 155(Pt A):37-47. PubMed ID: 37085353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving photosynthesis through the enhancement of Rubisco carboxylation capacity.
    Iñiguez C; Aguiló-Nicolau P; Galmés J
    Biochem Soc Trans; 2021 Nov; 49(5):2007-2019. PubMed ID: 34623388
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discovery of a readily heterologously expressed Rubisco from the deep sea with potential for CO
    Zhang J; Liu G; Carvajal AI; Wilson RH; Cai Z; Li Y
    Bioresour Bioprocess; 2021 Sep; 8(1):86. PubMed ID: 38650243
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineering Rubisco to enhance CO
    Zhao L; Cai Z; Li Y; Zhang Y
    Synth Syst Biotechnol; 2024 Mar; 9(1):55-68. PubMed ID: 38273863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Grafting Rhodobacter sphaeroides with red algae Rubisco to accelerate catalysis and plant growth.
    Zhou Y; Gunn LH; Birch R; Andersson I; Whitney SM
    Nat Plants; 2023 Jun; 9(6):978-986. PubMed ID: 37291398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards engineering a hybrid carboxysome.
    Nguyen ND; Pulsford SB; Hee WY; Rae BD; Rourke LM; Price GD; Long BM
    Photosynth Res; 2023 May; 156(2):265-277. PubMed ID: 36892800
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Producing fast and active Rubisco in tobacco to enhance photosynthesis.
    Chen T; Riaz S; Davey P; Zhao Z; Sun Y; Dykes GF; Zhou F; Hartwell J; Lawson T; Nixon PJ; Lin Y; Liu LN
    Plant Cell; 2023 Feb; 35(2):795-807. PubMed ID: 36471570
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering Cupriavidus necator H16 for enhanced lithoautotrophic poly(3-hydroxybutyrate) production from CO
    Kim S; Jang YJ; Gong G; Lee SM; Um Y; Kim KH; Ko JK
    Microb Cell Fact; 2022 Nov; 21(1):231. PubMed ID: 36335362
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predicting plant Rubisco kinetics from RbcL sequence data using machine learning.
    Iqbal WA; Lisitsa A; Kapralov MV
    J Exp Bot; 2023 Jan; 74(2):638-650. PubMed ID: 36094849
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Red Rubiscos and opportunities for engineering green plants.
    Oh ZG; Askey B; Gunn LH
    J Exp Bot; 2023 Jan; 74(2):520-542. PubMed ID: 36055563
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improving plant productivity by re-tuning the regeneration of RuBP in the Calvin-Benson-Bassham cycle.
    Raines CA
    New Phytol; 2022 Oct; 236(2):350-356. PubMed ID: 35860861
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The small subunit of Rubisco and its potential as an engineering target.
    Mao Y; Catherall E; Díaz-Ramos A; Greiff GRL; Azinas S; Gunn L; McCormick AJ
    J Exp Bot; 2023 Jan; 74(2):543-561. PubMed ID: 35849331
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Coevolution of RuBisCO, Photorespiration, and Carbon Concentrating Mechanisms in Higher Plants.
    Cummins PL
    Front Plant Sci; 2021; 12():662425. PubMed ID: 34539685
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.