BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 31658809)

  • 1. Investigation of the Factors That Dictate the Preferred Orientation of Lexitropsins in the Minor Groove of DNA.
    Alniss HY; Witzel II; Semreen MH; Panda PK; Mishra YK; Ahuja R; Parkinson JA
    J Med Chem; 2019 Nov; 62(22):10423-10440. PubMed ID: 31658809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short lexitropsin that recognizes the DNA minor groove at 5'-ACTAGT-3': understanding the role of isopropyl-thiazole.
    Anthony NG; Johnston BF; Khalaf AI; MacKay SP; Parkinson JA; Suckling CJ; Waigh RD
    J Am Chem Soc; 2004 Sep; 126(36):11338-49. PubMed ID: 15355117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA minor groove binding of cross-linked lexitropsins: experimental conditions required to observe the covalently linked WPPW (groove wall-peptide-peptide-groove wall) motif.
    Chen YH; Lown JW
    Biophys J; 1995 May; 68(5):2041-8. PubMed ID: 7612846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The binding of prototype lexitropsins to the minor groove of DNA: quantum chemical studies.
    Mazurek P; Feng W; Shukla K; Sapse AM; Lown JW
    J Biomol Struct Dyn; 1991 Oct; 9(2):299-313. PubMed ID: 1660279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular recognition between oligopeptides and nucleic acids: DNA sequence specificity and binding properties of thiazole-lexitropsins incorporating the concepts of base site acceptance and avoidance.
    Rao KE; Shea RG; Yadagiri B; Lown JW
    Anticancer Drug Des; 1990 Feb; 5(1):3-20. PubMed ID: 2156516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular recognition and binding of a GC site-avoiding thiazole-lexitropsin to the decadeoxyribonucleotide d-[CGCAATTGCG]2: 1H-NMR evidence for thiazole intercalation.
    Kumar S; Jaseja M; Zimmermann J; Yadagiri B; Pon RT; Sapse AM; Lown JW
    J Biomol Struct Dyn; 1990 Aug; 8(1):99-121. PubMed ID: 2177339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent developments in sequence selective minor groove DNA effectors.
    Reddy BS; Sharma SK; Lown JW
    Curr Med Chem; 2001 Apr; 8(5):475-508. PubMed ID: 11281837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antiparallel side-by-side dimeric motif for sequence-specific recognition in the minor groove of DNA by the designed peptide 1-methylimidazole-2-carboxamide netropsin.
    Mrksich M; Wade WS; Dwyer TJ; Geierstanger BH; Wemmer DE; Dervan PB
    Proc Natl Acad Sci U S A; 1992 Aug; 89(16):7586-90. PubMed ID: 1323845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence recognition of DNA by lexitropsins.
    Goodsell DS
    Curr Med Chem; 2001 Apr; 8(5):509-16. PubMed ID: 11281838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FTIR study of specific binding interactions between DNA minor groove binding ligands and polynucleotides.
    Adnet F; Liquier J; Taillandier E; Singh MP; Rao KE; Lown JW
    J Biomol Struct Dyn; 1992 Dec; 10(3):565-75. PubMed ID: 1283517
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of the methyl substituents of a thiazole-containing lexitropsin on the mode of binding to DNA.
    Plouvier B; Houssin R; Helbecque N; Colson P; Houssier C; Hénichart JP; Bailly C
    Anticancer Drug Des; 1995 Mar; 10(2):155-66. PubMed ID: 7710636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA recognition by lexitropsins, minor groove binding agents.
    Lown JW
    J Mol Recognit; 1994 Jun; 7(2):79-88. PubMed ID: 7826677
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in the design of DNA sequence-specific lexitropsins.
    Walker WL; Kopka ML; Goodsell DS
    Biopolymers; 1997; 44(4):323-34. PubMed ID: 9782774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA binding, solubility, and partitioning characteristics of extended lexitropsins.
    Fishleigh RV; Fox KR; Khalaf AI; Pitt AR; Scobie M; Suckling CJ; Urwin J; Waigh RD; Young SC
    J Med Chem; 2000 Aug; 43(17):3257-66. PubMed ID: 10966744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular recognition between oligopeptides and nucleic acids. Specificity of binding of a monocationic bis-furan lexitropsin to DNA deduced from footprinting and 1H NMR studies.
    Lee M; Krowicki K; Shea RG; Lown JW; Pon RT
    J Mol Recognit; 1989 Sep; 2(2):84-93. PubMed ID: 2561528
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding to DNA of selected lexitropsins and effects on prokaryotic topoisomerase activity.
    Burckhardt G; Luck G; Störl K; Zimmer C; Lown JW
    Biochim Biophys Acta; 1993 Jun; 1173(3):266-72. PubMed ID: 8391323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of stapled DNA-minor-groove-binding molecules with a mutable atom simulated annealing method.
    Walker WL; Kopka ML; Dickerson RE; Goodsell DS
    J Comput Aided Mol Des; 1997 Nov; 11(6):539-46. PubMed ID: 9491346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbocyclic analogues of lexitropsin--DNA affinity and endonuclease inhibition.
    Pućkowska A; Drozdowska D; Midura-Nowaczek K
    Acta Pol Pharm; 2007; 64(2):115-9. PubMed ID: 17665860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and dynamic aspects of non-intercalative (1:1) binding of a thiazole-lexitropsin to the decadeoxyribonucleotide d-[CGCAATTGCG]2: An 1H-NMR and molecular modeling study.
    Kumar S; Bathini Y; Joseph T; Pon RT; Lown JW
    J Biomol Struct Dyn; 1991 Aug; 9(1):1-21. PubMed ID: 1664210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed mode of ligand-DNA binding results in S-shaped binding curves.
    Nechipurenko YuD ; Mikheikin AL; Streltsov SA; Zasedatelev AS; Nabiev IR
    J Biomol Struct Dyn; 2001 Apr; 18(5):703-8. PubMed ID: 11334107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.