These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 31658818)
1. Current applications of nanotechnology to develop plant growth inducer agents as an innovation strategy. Fincheira P; Tortella G; Duran N; Seabra AB; Rubilar O Crit Rev Biotechnol; 2020 Feb; 40(1):15-30. PubMed ID: 31658818 [TBL] [Abstract][Full Text] [Related]
2. Fabricated nanoparticles: current status and potential phytotoxic threats. Yadav T; Mungray AA; Mungray AK Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519 [TBL] [Abstract][Full Text] [Related]
3. Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Ahmad A; Hashmi SS; Palma JM; Corpas FJ Chemosphere; 2022 Mar; 290():133329. PubMed ID: 34922969 [TBL] [Abstract][Full Text] [Related]
4. Current trends in nano-technological interventions on plant growth and development: a review. Bijali J; Acharya K IET Nanobiotechnol; 2020 Apr; 14(2):113-119. PubMed ID: 32433027 [TBL] [Abstract][Full Text] [Related]
5. A comprehensive review of impacts of diverse nanoparticles on growth, development and physiological adjustments in plants under changing environment. Aqeel U; Aftab T; Khan MMA; Naeem M; Khan MN Chemosphere; 2022 Mar; 291(Pt 1):132672. PubMed ID: 34756946 [TBL] [Abstract][Full Text] [Related]
6. Nanoparticles: biosynthesis, translocation and role in plant metabolism. Faraz A; Faizan M; Sami F; Siddiqui H; Pichtel J; Hayat S IET Nanobiotechnol; 2019 Jun; 13(4):345-352. PubMed ID: 31171737 [TBL] [Abstract][Full Text] [Related]
8. Nanotechnology advances for sustainable agriculture: current knowledge and prospects in plant growth modulation and nutrition. Fincheira P; Tortella G; Seabra AB; Quiroz A; Diez MC; Rubilar O Planta; 2021 Sep; 254(4):66. PubMed ID: 34491441 [TBL] [Abstract][Full Text] [Related]
9. Nanotechnology: A New Opportunity in Plant Sciences. Wang P; Lombi E; Zhao FJ; Kopittke PM Trends Plant Sci; 2016 Aug; 21(8):699-712. PubMed ID: 27130471 [TBL] [Abstract][Full Text] [Related]
10. Small particles, big effects: How nanoparticles can enhance plant growth in favorable and harsh conditions. Wang J; Wu H; Wang Y; Ye W; Kong X; Yin Z J Integr Plant Biol; 2024 Jul; 66(7):1274-1294. PubMed ID: 38578151 [TBL] [Abstract][Full Text] [Related]
11. Evaluating the toxicity of selected types of nanochemicals. Kumar V; Kumari A; Guleria P; Yadav SK Rev Environ Contam Toxicol; 2012; 215():39-121. PubMed ID: 22057930 [TBL] [Abstract][Full Text] [Related]
12. Uptake, accumulation, toxicity, and interaction of metallic-based nanoparticles with plants: current challenges and future perspectives. Basit F; He X; Zhu X; Sheteiwy MS; Minkina T; Sushkova S; Josko I; Hu J; Hu W; Guan Y Environ Geochem Health; 2023 Jul; 45(7):4165-4179. PubMed ID: 37103657 [TBL] [Abstract][Full Text] [Related]
13. [Eco-toxicological effect of metal-based nanoparticles on plants: Research progress]. Zhang H; Peng C; Yang JJ; Shi JY Ying Yong Sheng Tai Xue Bao; 2013 Mar; 24(3):885-92. PubMed ID: 23755509 [TBL] [Abstract][Full Text] [Related]
14. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. Kumaraswamy RV; Kumari S; Choudhary RC; Pal A; Raliya R; Biswas P; Saharan V Int J Biol Macromol; 2018 Jul; 113():494-506. PubMed ID: 29481952 [TBL] [Abstract][Full Text] [Related]
15. Microbe-oriented nanoparticles as phytomedicines for plant health management: An emerging paradigm to achieve global food security. Noman M; Ahmed T; Ijaz U; Hameed A; Shahid M; Azizullah ; Li D; Song F Crit Rev Food Sci Nutr; 2023; 63(25):7489-7509. PubMed ID: 35254111 [TBL] [Abstract][Full Text] [Related]
16. Impact of nanopollution on plant growth, photosynthesis, toxicity, and metabolism in the agricultural sector: An updated review. Thiruvengadam M; Chi HY; Kim SH Plant Physiol Biochem; 2024 Feb; 207():108370. PubMed ID: 38271861 [TBL] [Abstract][Full Text] [Related]
17. Nanoparticle's uptake and translocation mechanisms in plants via seed priming, foliar treatment, and root exposure: a review. Khan I; Awan SA; Rizwan M; Hassan ZU; Akram MA; Tariq R; Brestic M; Xie W Environ Sci Pollut Res Int; 2022 Dec; 29(60):89823-89833. PubMed ID: 36344893 [TBL] [Abstract][Full Text] [Related]
18. Role of nanoparticles in crop improvement and abiotic stress management. Singh A; Tiwari S; Pandey J; Lata C; Singh IK J Biotechnol; 2021 Aug; 337():57-70. PubMed ID: 34175328 [TBL] [Abstract][Full Text] [Related]
19. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. Zhao L; Lu L; Wang A; Zhang H; Huang M; Wu H; Xing B; Wang Z; Ji R J Agric Food Chem; 2020 Feb; 68(7):1935-1947. PubMed ID: 32003987 [TBL] [Abstract][Full Text] [Related]
20. Toxicity, Uptake, and Translocation of Engineered Nanomaterials in Vascular plants. Miralles P; Church TL; Harris AT Environ Sci Technol; 2012 Sep; 46(17):9224-39. PubMed ID: 22892035 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]