BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 31659010)

  • 1. Strain-Dependent RstA Regulation of Clostridioides difficile Toxin Production and Sporulation.
    Edwards AN; Krall EG; McBride SM
    J Bacteriol; 2020 Jan; 202(2):. PubMed ID: 31659010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RstA Is a Major Regulator of Clostridioides difficile Toxin Production and Motility.
    Edwards AN; Anjuwon-Foster BR; McBride SM
    mBio; 2019 Mar; 10(2):. PubMed ID: 30862746
    [No Abstract]   [Full Text] [Related]  

  • 3. c-di-GMP Inhibits Early Sporulation in Clostridioides difficile.
    Edwards AN; Willams CL; Pareek N; McBride SM; Tamayo R
    mSphere; 2021 Dec; 6(6):e0091921. PubMed ID: 34878288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of
    Girinathan BP; Monot M; Boyle D; McAllister KN; Sorg JA; Dupuy B; Govind R
    mSphere; 2017; 2(1):. PubMed ID: 28217744
    [No Abstract]   [Full Text] [Related]  

  • 5. Characterization of Flagellum and Toxin Phase Variation in Clostridioides difficile Ribotype 012 Isolates.
    Anjuwon-Foster BR; Maldonado-Vazquez N; Tamayo R
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29735765
    [No Abstract]   [Full Text] [Related]  

  • 6. The Impact of pH on Clostridioides difficile Sporulation and Physiology.
    Wetzel D; McBride SM
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811041
    [No Abstract]   [Full Text] [Related]  

  • 7. CodY-Dependent Regulation of Sporulation in Clostridium difficile.
    Nawrocki KL; Edwards AN; Daou N; Bouillaut L; McBride SM
    J Bacteriol; 2016 Aug; 198(15):2113-30. PubMed ID: 27246573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Transcriptional Regulator Lrp Contributes to Toxin Expression, Sporulation, and Swimming Motility in
    Chen KY; Rathod J; Chiu YC; Chen JW; Tsai PJ; Huang IH
    Front Cell Infect Microbiol; 2019; 9():356. PubMed ID: 31681632
    [No Abstract]   [Full Text] [Related]  

  • 9. A novel regulator controls Clostridium difficile sporulation, motility and toxin production.
    Edwards AN; Tamayo R; McBride SM
    Mol Microbiol; 2016 Jun; 100(6):954-71. PubMed ID: 26915493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple factors contribute to bimodal toxin gene expression in Clostridioides (Clostridium) difficile.
    Ransom EM; Kaus GM; Tran PM; Ellermeier CD; Weiss DS
    Mol Microbiol; 2018 Nov; 110(4):533-549. PubMed ID: 30125399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Dual-Fluorescent-Reporter System in Clostridioides difficile Reveals a Division of Labor between Virulence and Transmission Gene Expression.
    Donnelly ML; Shrestha S; Ribis JW; Kuhn P; Krasilnikov M; Alves Feliciano C; Shen A
    mSphere; 2022 Jun; 7(3):e0013222. PubMed ID: 35638354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined and Distinct Roles of Agr Proteins in Clostridioides difficile 630 Sporulation, Motility, and Toxin Production.
    Ahmed UKB; Shadid TM; Larabee JL; Ballard JD
    mBio; 2020 Dec; 11(6):. PubMed ID: 33443122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Phosphotransfer Protein CD1492 Represses Sporulation Initiation in Clostridium difficile.
    Childress KO; Edwards AN; Nawrocki KL; Anderson SE; Woods EC; McBride SM
    Infect Immun; 2016 Dec; 84(12):3434-3444. PubMed ID: 27647869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human hypervirulent Clostridium difficile strains exhibit increased sporulation as well as robust toxin production.
    Merrigan M; Venugopal A; Mallozzi M; Roxas B; Viswanathan VK; Johnson S; Gerding DN; Vedantam G
    J Bacteriol; 2010 Oct; 192(19):4904-11. PubMed ID: 20675495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic and Phenotypic Characterization of the Nontoxigenic Clostridioides difficile Strain CCUG37785 and Demonstration of Its Therapeutic Potential for the Prevention of C. difficile Infection.
    Wang S; Heuler J; Wickramage I; Sun X
    Microbiol Spectr; 2022 Apr; 10(2):e0178821. PubMed ID: 35315695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spo0A Suppresses
    Dhungel BA; Govind R
    mSphere; 2020 Nov; 5(6):. PubMed ID: 33148827
    [No Abstract]   [Full Text] [Related]  

  • 17. Phage transcriptional regulator X (PtrX)-mediated augmentation of toxin production and virulence in Clostridioides difficile strain R20291.
    Gong JJ; Huang IH; Su MS; Xie SX; Liu WY; Huang CR; Hung YP; Wu SR; Tsai PJ; Ko WC; Chen JW
    Microbiol Res; 2024 Mar; 280():127576. PubMed ID: 38183754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile.
    Purcell EB; McKee RW; Bordeleau E; Burrus V; Tamayo R
    J Bacteriol; 2016 Feb; 198(3):565-77. PubMed ID: 26598364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C. difficile 630Δerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA.
    Rosenbusch KE; Bakker D; Kuijper EJ; Smits WK
    PLoS One; 2012; 7(10):e48608. PubMed ID: 23119071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of CodY protein on metabolism, sporulation and virulence in Clostridioides difficile ribotype 027.
    Daou N; Wang Y; Levdikov VM; Nandakumar M; Livny J; Bouillaut L; Blagova E; Zhang K; Belitsky BR; Rhee K; Wilkinson AJ; Sun X; Sonenshein AL
    PLoS One; 2019; 14(1):e0206896. PubMed ID: 30699117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.