These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31659022)

  • 1. An unbounded approach to microfluidics using the Rayleigh-Plateau instability of viscous threads directly drawn in a bath.
    Cai L; Marthelot J; Brun PT
    Proc Natl Acad Sci U S A; 2019 Nov; 116(46):22966-22971. PubMed ID: 31659022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Collective Rayleigh-Plateau Instability: A Mimic of Droplet Breakup in High Internal Phase Emulsion.
    Mansard V; Mecca JM; Dermody DL; Malotky D; Tucker CJ; Squires TM
    Langmuir; 2016 Mar; 32(11):2549-55. PubMed ID: 26963440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Interfacial Tension on Viscous Multiphase Flows in Coaxial Microfluidic Channels.
    Dinh T; Cubaud T
    Langmuir; 2021 Jun; 37(24):7420-7429. PubMed ID: 34115496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Instability mediated self-templating of drop crystals.
    Cai L; Marthelot J; Brun PT
    Sci Adv; 2022 Jul; 8(27):eabq0828. PubMed ID: 35857477
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Easy Printing of High Viscous Microdots by Spontaneous Breakup of Thin Fibers.
    Mecozzi L; Gennari O; Coppola S; Olivieri F; Rega R; Mandracchia B; Vespini V; Bramanti A; Ferraro P; Grilli S
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2122-2129. PubMed ID: 29278322
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets.
    Borthakur MP; Biswas G; Bandyopadhyay D
    Phys Rev E; 2017 Jul; 96(1-1):013115. PubMed ID: 29347101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets.
    Castillo-Orozco E; Davanlou A; Choudhury PK; Kumar R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):053022. PubMed ID: 26651794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid flow focused by a gas: jetting, dripping, and recirculation.
    Herrada MA; Gañán-Calvo AM; Ojeda-Monge A; Bluth B; Riesco-Chueca P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036323. PubMed ID: 18851159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dripping, jetting and tip streaming.
    Montanero JM; Gañán-Calvo AM
    Rep Prog Phys; 2020 Sep; 83(9):097001. PubMed ID: 32647097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Overcoming Rayleigh-Plateau instabilities: Stabilizing and destabilizing liquid-metal streams via electrochemical oxidation.
    Song M; Kartawira K; Hillaire KD; Li C; Eaker CB; Kiani A; Daniels KE; Dickey MD
    Proc Natl Acad Sci U S A; 2020 Aug; 117(32):19026-19032. PubMed ID: 32727907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Nozzle Geometry on the Fluid Dynamics of Thin Liquid Films Flowing down Vertical Strings in the Rayleigh-Plateau Regime.
    Sadeghpour A; Zeng Z; Ju YS
    Langmuir; 2017 Jun; 33(25):6292-6299. PubMed ID: 28590759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Nanoparticle Surfactants on the Breakup of Free-Falling Water Jets during Continuous Processing of Reconfigurable Structured Liquid Droplets.
    Toor A; Helms BA; Russell TP
    Nano Lett; 2017 May; 17(5):3119-3125. PubMed ID: 28358213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dripping to jetting transitions in coflowing liquid streams.
    Utada AS; Fernandez-Nieves A; Stone HA; Weitz DA
    Phys Rev Lett; 2007 Aug; 99(9):094502. PubMed ID: 17931011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages.
    Hua W; Mitchell K; Raymond L; Godina B; Zhao D; Zhou W; Jin Y
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4736-4756. PubMed ID: 34582176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluctuations in Rayleigh breakup induced by particulates.
    Clarke A; Rieubland S
    Adv Colloid Interface Sci; 2010 Dec; 161(1-2):15-21. PubMed ID: 19846049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental Study of the Influence of Ink Properties and Process Parameters on Ejection Volume in Electrohydrodynamic Jet Printing.
    Guo L; Duan Y; Huang Y; Yin Z
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Printing on liquid elastomers.
    Cai L; Marthelot J; Falcón C; Reis PM; Brun PT
    Soft Matter; 2020 Mar; 16(12):3137-3142. PubMed ID: 32159541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive experimental dataset on large-amplitude Rayleigh-Plateau instability in continuous InkJet printing regime.
    Maîtrejean G; Cousin M; Truong F; Verdoot V; Hugenell F; Roux DCD
    Data Brief; 2024 Feb; 52():109941. PubMed ID: 38260863
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High inertial microfluidics for droplet generation in a flow-focusing geometry.
    Mastiani M; Seo S; Riou B; Kim M
    Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.