These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 31659028)

  • 1. Tuning friction to a superlubric state via in-plane straining.
    Zhang S; Hou Y; Li S; Liu L; Zhang Z; Feng XQ; Li Q
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24452-24456. PubMed ID: 31659028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The evolving quality of frictional contact with graphene.
    Li S; Li Q; Carpick RW; Gumbsch P; Liu XZ; Ding X; Sun J; Li J
    Nature; 2016 Nov; 539(7630):541-545. PubMed ID: 27882973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revisiting Frictional Characteristics of Graphene: Effect of In-Plane Straining.
    Xu C; Zhang S; Du H; Xue T; Kang Y; Zhang Y; Zhao P; Li Q
    ACS Appl Mater Interfaces; 2022 Sep; 14(36):41571-41576. PubMed ID: 36043243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generalized Scaling Law of Structural Superlubricity.
    Wang J; Cao W; Song Y; Qu C; Zheng Q; Ma M
    Nano Lett; 2019 Nov; 19(11):7735-7741. PubMed ID: 31646868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipation Mechanisms and Superlubricity in Solid Lubrication by Wet-Transferred Solution-Processed Graphene Flakes: Implications for Micro Electromechanical Devices.
    Buzio R; Gerbi A; Bernini C; Repetto L; Silva A; Vanossi A
    ACS Appl Nano Mater; 2023 Jul; 6(13):11443-11454. PubMed ID: 37469503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a Microscale Superlubric Graphite Interface.
    Wang K; Qu C; Wang J; Quan B; Zheng Q
    Phys Rev Lett; 2020 Jul; 125(2):026101. PubMed ID: 32701344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation.
    Sinclair RC; Suter JL; Coveney PV
    Adv Mater; 2018 Mar; 30(13):e1705791. PubMed ID: 29436032
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Friction. Macroscale superlubricity enabled by graphene nanoscroll formation.
    Berman D; Deshmukh SA; Sankaranarayanan SK; Erdemir A; Sumant AV
    Science; 2015 Jun; 348(6239):1118-22. PubMed ID: 25977372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain Engineering Modulates Graphene Interlayer Friction by Moiré Pattern Evolution.
    Wang K; Qu C; Wang J; Ouyang W; Ma M; Zheng Q
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36169-36176. PubMed ID: 31486630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sliding friction of graphene/hexagonal -boron nitride heterojunctions: a route to robust superlubricity.
    Mandelli D; Leven I; Hod O; Urbakh M
    Sci Rep; 2017 Sep; 7(1):10851. PubMed ID: 28883489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Principles of atomic friction: from sticking atoms to superlubric sliding.
    Hölscher H; Schirmeisen A; Schwarz UD
    Philos Trans A Math Phys Eng Sci; 2008 Apr; 366(1869):1383-404. PubMed ID: 18156127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Amorphous-Crystalline Phase Transition on Superlubric Sliding.
    Cihan E; Dietzel D; Jany BR; Schirmeisen A
    Phys Rev Lett; 2023 Mar; 130(12):126205. PubMed ID: 37027841
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Attraction induced frictionless sliding of rare gas monolayer on metallic surfaces: an efficient strategy for superlubricity.
    Sun J; Zhang Y; Lu Z; Xue Q; Wang L
    Phys Chem Chem Phys; 2017 May; 19(18):11026-11031. PubMed ID: 28397884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental Decoding and Tuning Electronic Friction of Si Nanotip Sliding on Graphene.
    Li Y; Wu B; Ouyang W; Liu Z; Wang W
    Nano Lett; 2024 Jan; 24(4):1130-1136. PubMed ID: 38252698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Superlubric Interface across Nano- and Micro-Scales Enabled by Fluoroalkylsilane Self-Assembled Monolayers and Atomically Thin Graphene.
    Zhao X; Peng Y; Cao X; Yu K; Lang H
    ACS Appl Mater Interfaces; 2021 Dec; 13(47):56704-56717. PubMed ID: 34792342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene Confers Ultralow Friction on Nanogear Cogs.
    Mescola A; Paolicelli G; Ogilvie SP; Guarino R; McHugh JG; Rota A; Iacob E; Gnecco E; Valeri S; Pugno NM; Gadhamshetty V; Rahman MM; Ajayan P; Dalton AB; Tripathi M
    Small; 2021 Nov; 17(47):e2104487. PubMed ID: 34676978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adhesion-dependent negative friction coefficient on chemically modified graphite at the nanoscale.
    Deng Z; Smolyanitsky A; Li Q; Feng XQ; Cannara RJ
    Nat Mater; 2012 Dec; 11(12):1032-7. PubMed ID: 23064494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering Graphene Wrinkles for Large Enhancement of Interlaminar Friction Enabled Damping Capability.
    Lu W; Qin F; Wang Y; Luo Y; Wang H; Scarpa F; Li J; Sesana R; Cura F; Peng HX
    ACS Appl Mater Interfaces; 2019 Aug; 11(33):30278-30289. PubMed ID: 31347353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Double-Vacancy Controlled Friction on Graphene: The Enhancement of Atomic Pinning.
    Shen B; Lin Q; Chen S; Huang Z; Ji Z; Cao A; Zhang Z
    Langmuir; 2019 Oct; 35(40):12898-12907. PubMed ID: 31513424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.