These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31659040)

  • 21. Effects of training on neuronal activity and interactions in primary and higher visual cortices in the alert cat.
    Salazar RF; Kayser C; König P
    J Neurosci; 2004 Feb; 24(7):1627-36. PubMed ID: 14973243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel mechanism of response selectivity of neurons in cat visual cortex.
    Volgushev M; Pernberg J; Eysel UT
    J Physiol; 2002 Apr; 540(Pt 1):307-20. PubMed ID: 11927689
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conditioning of single units in visual association cortex: cell-specific behavior within a small population.
    Morrell F; Hoeppner TJ; de Toledo-Morrell L
    Exp Neurol; 1983 Apr; 80(1):111-46. PubMed ID: 6832265
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stimulus-dependent augmented gamma oscillatory activity between the functionally connected cortical neurons in the primary visual cortex.
    Bharmauria V; Bachatene L; Cattan S; Chanauria N; Rouat J; Molotchnikoff S
    Eur J Neurosci; 2015 Jun; 41(12):1587-96. PubMed ID: 25845266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamics of striate cortical activity in the alert macaque: I. Incidence and stimulus-dependence of gamma-band neuronal oscillations.
    Friedman-Hill S; Maldonado PE; Gray CM
    Cereb Cortex; 2000 Nov; 10(11):1105-16. PubMed ID: 11053231
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conditioned up and down modulations of short latency gamma band oscillations in visual cortex during fear learning in humans.
    Santos-Mayo A; de Echegaray J; Moratti S
    Sci Rep; 2022 Feb; 12(1):2652. PubMed ID: 35173252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Receptive field expansion in adult visual cortex is linked to dynamic changes in strength of cortical connections.
    Das A; Gilbert CD
    J Neurophysiol; 1995 Aug; 74(2):779-92. PubMed ID: 7472382
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Temporal specificity in the cortical plasticity of visual space representation.
    Fu YX; Djupsund K; Gao H; Hayden B; Shen K; Dan Y
    Science; 2002 Jun; 296(5575):1999-2003. PubMed ID: 12065829
    [TBL] [Abstract][Full Text] [Related]  

  • 29. TMS-induced neuronal plasticity enables targeted remodeling of visual cortical maps.
    Kozyrev V; Staadt R; Eysel UT; Jancke D
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6476-6481. PubMed ID: 29866856
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interplay of orientation selectivity and the power of low- and high-gamma bands in the cat primary visual cortex.
    Bharmauria V; Bachatene L; Ouelhazi A; Cattan S; Chanauria N; Etindele-Sosso FA; Rouat J; Molotchnikoff S
    Neurosci Lett; 2016 May; 620():14-9. PubMed ID: 27033667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synchronisation hubs in the visual cortex may arise from strong rhythmic inhibition during gamma oscillations.
    Folias SE; Yu S; Snyder A; Nikolić D; Rubin JE
    Eur J Neurosci; 2013 Sep; 38(6):2864-83. PubMed ID: 23837724
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatio-temporal plasticity of cortical receptive fields in response to repetitive visual stimulation in the adult cat.
    Eyding D; Schweigart G; Eysel UT
    Neuroscience; 2002; 112(1):195-215. PubMed ID: 12044484
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellular analogs of visual cortical epigenesis. II. Plasticity of binocular integration.
    Shulz D; Frégnac Y
    J Neurosci; 1992 Apr; 12(4):1301-18. PubMed ID: 1556598
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chaos and synchrony in a model of a hypercolumn in visual cortex.
    Hansel D; Sompolinsky H
    J Comput Neurosci; 1996 Mar; 3(1):7-34. PubMed ID: 8717487
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oscillatory discharge in the visual system: does it have a functional role?
    Ghose GM; Freeman RD
    J Neurophysiol; 1992 Nov; 68(5):1558-74. PubMed ID: 1479430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activity-dependent regulation of 'on' and 'off' responses in cat visual cortical receptive fields.
    Debanne D; Shulz DE; Fregnac Y
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):523-48. PubMed ID: 9508815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gating of local network signals appears as stimulus-dependent activity envelopes in striate cortex.
    Schiff ND; Purpura KP; Victor JD
    J Neurophysiol; 1999 Nov; 82(5):2182-96. PubMed ID: 10561398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An unsupervised learning model of neural plasticity: Orientation selectivity in goggle-reared kittens.
    Hsu AS; Dayan P
    Vision Res; 2007 Oct; 47(22):2868-77. PubMed ID: 17850840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stimulus-dependent gamma (30-50 Hz) oscillations in simple and complex fast rhythmic bursting cells in primary visual cortex.
    Cardin JA; Palmer LA; Contreras D
    J Neurosci; 2005 Jun; 25(22):5339-50. PubMed ID: 15930382
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Relationships between image structure and gamma oscillations and synchronization in visual cortex of cats.
    Molotchnikoff S; Shumikhina S
    Eur J Neurosci; 2000 Apr; 12(4):1440-52. PubMed ID: 10762372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.