BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31659311)

  • 1. Expedited mapping of the ligandable proteome using fully functionalized enantiomeric probe pairs.
    Wang Y; Dix MM; Bianco G; Remsberg JR; Lee HY; Kalocsay M; Gygi SP; Forli S; Vite G; Lawrence RM; Parker CG; Cravatt BF
    Nat Chem; 2019 Dec; 11(12):1113-1123. PubMed ID: 31659311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mapping the protein interaction landscape for fully functionalized small-molecule probes in human cells.
    Kambe T; Correia BE; Niphakis MJ; Cravatt BF
    J Am Chem Soc; 2014 Jul; 136(30):10777-82. PubMed ID: 25045785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes.
    Chen Y; Craven GB; Kamber RA; Cuesta A; Zhersh S; Moroz YS; Bassik MC; Taunton J
    Nat Chem; 2023 Nov; 15(11):1616-1625. PubMed ID: 37460812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expanding chemogenomic space using chemoproteomics.
    Jones LH
    Bioorg Med Chem; 2019 Aug; 27(15):3451-3453. PubMed ID: 31221609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reimagining Druggability Using Chemoproteomic Platforms.
    Spradlin JN; Zhang E; Nomura DK
    Acc Chem Res; 2021 Apr; 54(7):1801-1813. PubMed ID: 33733731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NHS-Esters As Versatile Reactivity-Based Probes for Mapping Proteome-Wide Ligandable Hotspots.
    Ward CC; Kleinman JI; Nomura DK
    ACS Chem Biol; 2017 Jun; 12(6):1478-1483. PubMed ID: 28445029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proteome-wide covalent ligand discovery in native biological systems.
    Backus KM; Correia BE; Lum KM; Forli S; Horning BD; González-Páez GE; Chatterjee S; Lanning BR; Teijaro JR; Olson AJ; Wolan DW; Cravatt BF
    Nature; 2016 Jun; 534(7608):570-4. PubMed ID: 27309814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ligand and Target Discovery by Fragment-Based Screening in Human Cells.
    Parker CG; Galmozzi A; Wang Y; Correia BE; Sasaki K; Joslyn CM; Kim AS; Cavallaro CL; Lawrence RM; Johnson SR; Narvaiza I; Saez E; Cravatt BF
    Cell; 2017 Jan; 168(3):527-541.e29. PubMed ID: 28111073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The application of small molecule bioactive probes in the identification of cellular targets].
    Zhang J; Zhou HC
    Yao Xue Xue Bao; 2012 Mar; 47(3):299-306. PubMed ID: 22645752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small molecule probes of cellular pathways and networks.
    Castoreno AB; Eggert US
    ACS Chem Biol; 2011 Jan; 6(1):86-94. PubMed ID: 21087032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small Molecule Interactome Mapping by Photo-Affinity Labeling (SIM-PAL) to Identify Binding Sites of Small Molecules on a Proteome-Wide Scale.
    Flaxman HA; Miyamoto DK; Woo CM
    Curr Protoc Chem Biol; 2019 Dec; 11(4):e75. PubMed ID: 31763793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale chemoproteomics expedites ligand discovery and predicts ligand behavior in cells.
    Offensperger F; Tin G; Duran-Frigola M; Hahn E; Dobner S; Ende CWA; Strohbach JW; Rukavina A; Brennsteiner V; Ogilvie K; Marella N; Kladnik K; Ciuffa R; Majmudar JD; Field SD; Bensimon A; Ferrari L; Ferrada E; Ng A; Zhang Z; Degliesposti G; Boeszoermenyi A; Martens S; Stanton R; Müller AC; Hannich JT; Hepworth D; Superti-Furga G; Kubicek S; Schenone M; Winter GE
    Science; 2024 Apr; 384(6694):eadk5864. PubMed ID: 38662832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hotspot Identification on Protein Surfaces Using Probe-Based MD Simulations: Successes and Challenges.
    Sayyed-Ahmad A
    Curr Top Med Chem; 2018; 18(27):2278-2283. PubMed ID: 30499401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A proteome-wide atlas of lysine-reactive chemistry.
    Abbasov ME; Kavanagh ME; Ichu TA; Lazear MR; Tao Y; Crowley VM; Am Ende CW; Hacker SM; Ho J; Dix MM; Suciu R; Hayward MM; Kiessling LL; Cravatt BF
    Nat Chem; 2021 Nov; 13(11):1081-1092. PubMed ID: 34504315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Public resources for chemical probes: the journey so far and the road ahead.
    Antolin AA; Workman P; Al-Lazikani B
    Future Med Chem; 2021 Apr; 13(8):731-747. PubMed ID: 31778323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Global Map of Lipid-Binding Proteins and Their Ligandability in Cells.
    Niphakis MJ; Lum KM; Cognetta AB; Correia BE; Ichu TA; Olucha J; Brown SJ; Kundu S; Piscitelli F; Rosen H; Cravatt BF
    Cell; 2015 Jun; 161(7):1668-80. PubMed ID: 26091042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biophysical screening for the discovery of small-molecule ligands.
    Ciulli A
    Methods Mol Biol; 2013; 1008():357-88. PubMed ID: 23729259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A chiral trick to map protein ligandability.
    Amako Y; Woo CM
    Nat Chem; 2019 Dec; 11(12):1080-1082. PubMed ID: 31758156
    [No Abstract]   [Full Text] [Related]  

  • 19. Chemical Proteomics for Expanding the Druggability of Human Disease.
    Zhang X
    Chembiochem; 2020 Dec; 21(23):3319-3320. PubMed ID: 32964553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Proteome-Wide Potential for Reversible Covalency at Cysteine.
    Senkane K; Vinogradova EV; Suciu RM; Crowley VM; Zaro BW; Bradshaw JM; Brameld KA; Cravatt BF
    Angew Chem Int Ed Engl; 2019 Aug; 58(33):11385-11389. PubMed ID: 31222866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.