These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 31659355)

  • 1. Important features of the potential energy surface of the methylamine plus O(
    Wolf ME; Hoobler PR; Turney JM; Schaefer HF
    Phys Chem Chem Phys; 2019 Nov; 21(43):24194-24205. PubMed ID: 31659355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Benchmark ab Initio Characterization of the Complex Potential Energy Surface of the Cl
    Szabó I; Czakó G
    J Phys Chem A; 2017 Aug; 121(30):5748-5757. PubMed ID: 28692271
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Benchmark ab Initio Characterization of the Complex Potential Energy Surface of the F
    Tajti V; Czakó G
    J Phys Chem A; 2017 Apr; 121(14):2847-2854. PubMed ID: 28338332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Accurate MRCI and CC study of the most relevant stationary points and other topographical attributes for the ground-state C(2)H(2) potential energy surface.
    Joseph S; Varandas AJ
    J Phys Chem A; 2010 Dec; 114(50):13277-87. PubMed ID: 21105639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Big Changes for Small Noncovalent Dimers: Revisiting the Potential Energy Surfaces of (P2)2 and (PCCP)2 with CCSD(T) Optimizations and Vibrational Frequencies.
    Van Dornshuld E; Tschumper GS
    J Chem Theory Comput; 2016 Apr; 12(4):1534-41. PubMed ID: 26999433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal geometries and harmonic vibrational frequencies of the global minima of water clusters (H2O)n, n = 2-6, and several hexamer local minima at the CCSD(T) level of theory.
    Miliordos E; Aprà E; Xantheas SS
    J Chem Phys; 2013 Sep; 139(11):114302. PubMed ID: 24070285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ab Initio/Transition-State Theory Study of the Reactions of Ċ
    Sun Y; Zhou CW; Somers KP; Curran HJ
    J Phys Chem A; 2019 Oct; 123(42):9019-9052. PubMed ID: 31566374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmark
    Szűcs T; Czakó G
    Phys Chem Chem Phys; 2021 May; 23(17):10347-10356. PubMed ID: 33881412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High level
    Wolf ME; Turney JM; Schaefer HF
    Phys Chem Chem Phys; 2020 Nov; 22(44):25638-25651. PubMed ID: 33146170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantum chemistry study of the Cl atom reaction with formaldehyde.
    Gruber-Stadler M; Mühlhäuser M; Sellevåg SR; Nielsen CJ
    J Phys Chem A; 2008 Jan; 112(1):9-22. PubMed ID: 18069803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmark ab Initio Characterization of the Inversion and Retention Pathways of the OH
    Tasi DA; Fábián Z; Czakó G
    J Phys Chem A; 2018 Jul; 122(26):5773-5780. PubMed ID: 29878774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Benchmark ab Initio Characterization of the Complex Potential Energy Surfaces of the X
    Hajdu B; Czakó G
    J Phys Chem A; 2018 Feb; 122(7):1886-1895. PubMed ID: 29360360
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways and reduced-dimension five-dimensional potential energy surface for the reactions H3+ + CO-->H2+HCO+ and H3+ + CO-->H2+HOC+.
    Li H; Hirano T; Amano T; Le Roy RJ
    J Chem Phys; 2008 Dec; 129(24):244306. PubMed ID: 19123506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential-energy surface for the electronic ground state of NH3 up to 20,000 cm-1 above equilibrium.
    Yurchenko SN; Zheng J; Lin H; Jensen P; Thiel W
    J Chem Phys; 2005 Oct; 123(13):134308. PubMed ID: 16223289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio based potential energy surface and kinetics study of the OH + NH3 hydrogen abstraction reaction.
    Monge-Palacios M; Rangel C; Espinosa-Garcia J
    J Chem Phys; 2013 Feb; 138(8):084305. PubMed ID: 23464149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate ab initio potential energy surface, dynamics, and thermochemistry of the F+CH4-->HF+CH3 reaction.
    Czakó G; Shepler BC; Braams BJ; Bowman JM
    J Chem Phys; 2009 Feb; 130(8):084301. PubMed ID: 19256605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical study of the gas-phase reactions of iodine atoms ((2)P(3/2)) with H(2), H(2)O, HI, and OH.
    Canneaux S; Xerri B; Louis F; Cantrel L
    J Phys Chem A; 2010 Sep; 114(34):9270-88. PubMed ID: 20672845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accurate ab initio structure, dissociation energy, and vibrational spectroscopy of the F(-)-CH4 anion complex.
    Czakó G; Braams BJ; Bowman JM
    J Phys Chem A; 2008 Aug; 112(32):7466-72. PubMed ID: 18651724
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the choice of the ab initio level of theory for potential energy surface developments.
    Czakó G; Szabó I; Telekes H
    J Phys Chem A; 2014 Jan; 118(3):646-54. PubMed ID: 24377787
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combustion chemistry: important features of the C3H5 potential energy surface, including allyl radical, propargyl + H2, allene + H, and eight transition states.
    Narendrapurapu BS; Simmonett AC; Schaefer HF; Miller JA; Klippenstein SJ
    J Phys Chem A; 2011 Dec; 115(49):14209-14. PubMed ID: 22032701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.