BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 31659476)

  • 1. Application of Externally Applied Lower Punch Vibration and its Effects on Tablet Manufacturing.
    Kalies A; Özcoban H; Leopold CS
    Pharm Res; 2019 Oct; 36(12):173. PubMed ID: 31659476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Characteristics of a Novel Vibration Technique for the Densification of a Powder Bed within a Die of a Rotary Tablet Press - a Proof of Concept.
    Kalies A; Özcoban H; Leopold CS
    AAPS PharmSciTech; 2019 Mar; 20(4):148. PubMed ID: 30895389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel approach to avoid capping and/or lamination by application of external lower punch vibration.
    Kalies A; Heinrich T; Leopold CS
    Int J Pharm; 2020 Apr; 580():119195. PubMed ID: 32135230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of two paddle wheel geometries within the filling chamber of a rotary tablet press feed frame with regard to the distribution behavior of a model powder and the influence on the resulting tablet mass.
    Dühlmeyer KP; Özcoban H; Leopold CS
    Drug Dev Ind Pharm; 2019 Aug; 45(8):1233-1241. PubMed ID: 30724111
    [No Abstract]   [Full Text] [Related]  

  • 5. Powder die filling under gravity and suction fill mechanisms.
    Baserinia R; Sinka IC
    Int J Pharm; 2019 May; 563():135-155. PubMed ID: 30742983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of suction during die fill on a rotary tablet press.
    Jackson S; Sinka IC; Cocks AC
    Eur J Pharm Biopharm; 2007 Feb; 65(2):253-6. PubMed ID: 17123796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow behaviour of pharmaceutical powders during rotary die filling with a paddle feeder.
    Tang X; Zakhvatayeva A; Zhang L; Wu ZF; Sun P; Wu CY
    Int J Pharm; 2020 Jul; 585():119547. PubMed ID: 32569812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of different feed frame components on the powder behavior and the residence time distribution with regard to the continuous manufacturing of tablets.
    Dülle M; Özcoban H; Leopold CS
    Int J Pharm; 2019 Jan; 555():220-227. PubMed ID: 30419296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of the powder behavior and the residence time distribution within a production scale rotary tablet press.
    Dülle M; Özcoban H; Leopold CS
    Eur J Pharm Sci; 2018 Dec; 125():205-214. PubMed ID: 30312745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Microcrystalline cellulose and their flow -- morphological properties modifications as an effective excpients in tablet formulation technology containing lattice established API and also dry plant extract].
    Zgoda MM; Nachajski MJ; Kołodziejczyk MK
    Polim Med; 2009; 39(1):17-30. PubMed ID: 19580170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reduction of tablet weight variability by optimizing paddle speed in the forced feeder of a high-speed rotary tablet press.
    Peeters E; De Beer T; Vervaet C; Remon JP
    Drug Dev Ind Pharm; 2015 Apr; 41(4):530-9. PubMed ID: 24502268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the Factors That Control the Quality of Mini-Tablet Compression: Flow, Particle Size, and Tooling Dimension.
    Zhao J; Yin D; Rowe J; Badawy S; Nikfar F; Pandey P
    J Pharm Sci; 2018 Apr; 107(4):1204-1208. PubMed ID: 29233726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluidity and tableting characteristics of a powder solid dispersion of the low melting drugs ketoprofen and ibuprofen with crospovidone.
    Shibata Y; Fujii M; Noda S; Kokudai M; Okada H; Kondoh M; Watanabe Y
    Drug Dev Ind Pharm; 2006 Apr; 32(4):449-56. PubMed ID: 16638683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time monitoring of pharmaceutical properties of medical tablets during direct tableting process by hybrid tableting process parameter-time profiles.
    Saito S; Hattori Y; Sakamoto T; Otsuka M
    Biomed Mater Eng; 2020; 30(5-6):509-524. PubMed ID: 31771033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of the Punch Speed on the Die Wall/Powder Kinematic Friction During Tableting.
    Desbois L; Tchoreloff P; Mazel V
    J Pharm Sci; 2019 Oct; 108(10):3359-3365. PubMed ID: 31095957
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the die compaction of powders used in pharmaceutics.
    Aryanpour G; Farzaneh M
    Pharm Dev Technol; 2018 Jul; 23(6):628-635. PubMed ID: 28631521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utility of Microcrystalline Cellulose for Improving Drug Content Uniformity in Tablet Manufacturing Using Direct Powder Compression.
    Nakamura S; Tanaka C; Yuasa H; Sakamoto T
    AAPS PharmSciTech; 2019 Mar; 20(4):151. PubMed ID: 30903317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of crustacean chitin as a co-diluent in direct compression of tablets.
    Mir VG; Heinämäki J; Antikainen O; Sandler N; Revoredo OB; Colarte AI; Nieto OM; Yliruusi J
    AAPS PharmSciTech; 2010 Mar; 11(1):409-15. PubMed ID: 20238188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method.
    Diarra H; Mazel V; Busignies V; Tchoreloff P
    Int J Pharm; 2015 Sep; 493(1-2):121-8. PubMed ID: 26200746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental study of die filling of pharmaceutical powders using a rotary die filling system.
    Zakhvatayeva A; Zhong W; Makroo HA; Hare C; Wu CY
    Int J Pharm; 2018 Dec; 553(1-2):84-96. PubMed ID: 30321642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.