These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 31659855)

  • 21. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.
    Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S
    Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 2D ZnIn(2)S(4) nanosheet/1D TiO(2) nanorod heterostructure arrays for improved photoelectrochemical water splitting.
    Liu Q; Lu H; Shi Z; Wu F; Guo J; Deng K; Li L
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17200-7. PubMed ID: 25225738
    [TBL] [Abstract][Full Text] [Related]  

  • 23. All-Solution-Processed WO
    Lee BR; Lee MG; Park H; Lee TH; Lee SA; Bhat SSM; Kim C; Lee S; Jang HW
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20004-20012. PubMed ID: 31083922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrasonically prepared photocatalyst of W/WO
    Tayebi M; Masoumi Z; Lee BK
    Ultrason Sonochem; 2021 Jan; 70():105339. PubMed ID: 32927250
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Branched Ca-Fe
    Chen D; Liu Z; Guo Z; Ruan M; Yan W
    ChemSusChem; 2019 Jul; 12(14):3286-3295. PubMed ID: 31140747
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Efficient photoelectrochemical water oxidation over cobalt-phosphate (Co-Pi) catalyst modified BiVO4/1D-WO3 heterojunction electrodes.
    Pilli SK; Janarthanan R; Deutsch TG; Furtak TE; Brown LD; Turner JA; Herring AM
    Phys Chem Chem Phys; 2013 Sep; 15(35):14723-8. PubMed ID: 23900229
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multichannel Charge Transport of a BiVO
    Zhang Z; Chen B; Baek M; Yong K
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6218-6227. PubMed ID: 29377671
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liquid-Metal-Induced Hydrogen Insertion in Photoelectrodes for Enhanced Photoelectrochemical Water Oxidation.
    Wang J; Cheng H; Cui Y; Yang Y; He H; Cai Y; Wang Z; Wang L; Hu Y
    ACS Nano; 2022 Dec; 16(12):21248-21258. PubMed ID: 36480658
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced Interfacial Charge Transfer on a Tungsten Trioxide Photoanode with Immobilized Molecular Iridium Catalyst.
    Tong H; Jiang Y; Zhang Q; Li J; Jiang W; Zhang D; Li N; Xia L
    ChemSusChem; 2017 Aug; 10(16):3268-3275. PubMed ID: 28612494
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Conformal BiVO
    Zhang X; Wang X; Wang D; Ye J
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5623-5631. PubMed ID: 30004671
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An effective strategy for promoting charge separation by integrating heterojunctions and multiple homojunctions in TiO
    Si H; Zou L; Huang G; Liao J; Lin S
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):888-900. PubMed ID: 36306600
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual Oxygen and Tungsten Vacancies on a WO3 Photoanode for Enhanced Water Oxidation.
    Ma M; Zhang K; Li P; Jung MS; Jeong MJ; Park JH
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11819-23. PubMed ID: 27533279
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Seed layer-free hydrothermal synthesis of porous tungsten trioxide nanoflake arrays for photoelectrochemical water splitting.
    Wang Y; Li X; Yang Y
    RSC Adv; 2022 Sep; 12(40):26099-26105. PubMed ID: 36275104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced Photoelectrochemical Performance of WO
    Cao X; Xu C; Ma J; Dong Y; Dong C; Yue M; Ding Y
    ChemSusChem; 2019 Oct; 12(20):4685-4692. PubMed ID: 31419062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Photoelectrochemical Water Splitting with Er- and W-Codoped Bismuth Vanadate with WO
    Prasad U; Prakash J; Gupta SK; Zuniga J; Mao Y; Azeredo B; Kannan ANM
    ACS Appl Mater Interfaces; 2019 May; 11(21):19029-19039. PubMed ID: 31062583
    [TBL] [Abstract][Full Text] [Related]  

  • 36. BiVO
    Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel WO3/Sb2S3 Heterojunction Photocatalyst Based on WO3 of Different Morphologies for Enhanced Efficiency in Photoelectrochemical Water Splitting.
    Zhang J; Liu Z; Liu Z
    ACS Appl Mater Interfaces; 2016 Apr; 8(15):9684-91. PubMed ID: 27032422
    [TBL] [Abstract][Full Text] [Related]  

  • 38. WO₃ nanoflakes for enhanced photoelectrochemical conversion.
    Li W; Da P; Zhang Y; Wang Y; Lin X; Gong X; Zheng G
    ACS Nano; 2014 Nov; 8(11):11770-7. PubMed ID: 25347213
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface sulfurization activating hematite nanorods for efficient photoelectrochemical water splitting.
    Mao L; Huang YC; Fu Y; Dong CL; Shen S
    Sci Bull (Beijing); 2019 Sep; 64(17):1262-1271. PubMed ID: 36659607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insight into Charge Separation in WO
    Chae SY; Lee CS; Jung H; Joo OS; Min BK; Kim JH; Hwang YJ
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19780-19790. PubMed ID: 28530789
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.