These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31659891)

  • 1. "Return to the Soil" Nanopaper Sensor Device for Hyperdense Sensor Networks.
    Kasuga T; Yagyu H; Uetani K; Koga H; Nogi M
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43488-43493. PubMed ID: 31659891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally Conductive, Electrical Insulating, Optically Transparent Bi-Layer Nanopaper.
    Zhou L; Yang Z; Luo W; Han X; Jang SH; Dai J; Yang B; Hu L
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):28838-28843. PubMed ID: 27704759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite.
    Inui T; Koga H; Nogi M; Komoda N; Suganuma K
    Adv Mater; 2015 Feb; 27(6):1112-6. PubMed ID: 25530578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropatterning Silver Nanowire Networks on Cellulose Nanopaper for Transparent Paper Electronics.
    Kim D; Ko Y; Kwon G; Kim UJ; You J
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38517-38525. PubMed ID: 30360060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible conductive Ag nanowire/cellulose nanofibril hybrid nanopaper for strain and temperature sensing applications.
    Yin R; Yang S; Li Q; Zhang S; Liu H; Han J; Liu C; Shen C
    Sci Bull (Beijing); 2020 Jun; 65(11):899-908. PubMed ID: 36747422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-temperature humidity-sensing performance of SiC nanopaper.
    Li GY; Ma J; Peng G; Chen W; Chu ZY; Li YH; Hu TJ; Li XD
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):22673-9. PubMed ID: 25470597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver nanoparticles-embedded nanopaper as a colorimetric chiral sensing platform.
    Zor E
    Talanta; 2018 Jul; 184():149-155. PubMed ID: 29674026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly transparent and flexible nanopaper transistors.
    Huang J; Zhu H; Chen Y; Preston C; Rohrbach K; Cumings J; Hu L
    ACS Nano; 2013 Mar; 7(3):2106-13. PubMed ID: 23350951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clear transparent cellulose nanopaper prepared from a concentrated dispersion by high-humidity drying.
    Isobe N; Kasuga T; Nogi M
    RSC Adv; 2018 Jan; 8(4):1833-1837. PubMed ID: 35542620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-Temperature Fabrication of High-Performance Amorphous In-Ga-Zn-O/Al
    Ning H; Zeng Y; Kuang Y; Zheng Z; Zhou P; Yao R; Zhang H; Bao W; Chen G; Fang Z; Peng J
    ACS Appl Mater Interfaces; 2017 Aug; 9(33):27792-27800. PubMed ID: 28767216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lab-on-nanopaper: An optical sensing bioplatform based on curcumin embedded in bacterial nanocellulose as an albumin assay kit.
    Naghdi T; Golmohammadi H; Vosough M; Atashi M; Saeedi I; Maghsoudi MT
    Anal Chim Acta; 2019 Sep; 1070():104-111. PubMed ID: 31103163
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clearly Transparent Nanopaper from Highly Concentrated Cellulose Nanofiber Dispersion Using Dilution and Sonication.
    Kasuga T; Isobe N; Yagyu H; Koga H; Nogi M
    Nanomaterials (Basel); 2018 Feb; 8(2):. PubMed ID: 29439544
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible, robust, and high-performance gas sensors based on lignocellulosic nanofibrils.
    Tanguy NR; Khorsand Kazemi K; Hong J; Cheung KC; Mohammadi S; Gnanasekar P; Nair SS; Zarifi MH; Yan N
    Carbohydr Polym; 2022 Feb; 278():118920. PubMed ID: 34973739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanopaper as an Optical Sensing Platform.
    Morales-Narváez E; Golmohammadi H; Naghdi T; Yousefi H; Kostiv U; Horák D; Pourreza N; Merkoçi A
    ACS Nano; 2015 Jul; 9(7):7296-305. PubMed ID: 26135050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber/Carbon Black Composite.
    Tachibana S; Wang YF; Sekine T; Takeda Y; Hong J; Yoshida A; Abe M; Miura R; Watanabe Y; Kumaki D; Tokito S
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5721-5728. PubMed ID: 35067045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flexible, Disposable Cellulose-Paper-Based MoS
    Sahatiya P; Kadu A; Gupta H; Thanga Gomathi P; Badhulika S
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):9048-9059. PubMed ID: 29442495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nacre-Inspired Bacterial Cellulose/Mica Nanopaper with Excellent Mechanical and Electrical Insulating Properties by Biosynthesis.
    Sun WB; Han ZM; Yue X; Zhang HY; Yang KP; Liu ZX; Li DH; Zhao YX; Ling ZC; Yang HB; Guan QF; Yu SH
    Adv Mater; 2023 Jun; 35(24):e2300241. PubMed ID: 36971025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of transparent and superhydrophobic nanopaper via coating hybrid SiO
    Shi C; Wu Z; Xu J; Wu Q; Li D; Chen G; He M; Tian J
    Carbohydr Polym; 2019 Dec; 225():115229. PubMed ID: 31521295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paper-Based Disposable Molecular Sensor Constructed from Oxide Nanowires, Cellulose Nanofibers, and Pencil-Drawn Electrodes.
    Koga H; Nagashima K; Huang Y; Zhang G; Wang C; Takahashi T; Inoue A; Yan H; Kanai M; He Y; Uetani K; Nogi M; Yanagida T
    ACS Appl Mater Interfaces; 2019 Apr; 11(16):15044-15050. PubMed ID: 30942067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible, highly transparent and iridescent all-cellulose hybrid nanopaper with enhanced mechanical strength and writable surface.
    Xiong R; Han Y; Wang Y; Zhang W; Zhang X; Lu C
    Carbohydr Polym; 2014 Nov; 113():264-71. PubMed ID: 25256484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.