These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. A Comparison Study on the Magneto-Responsive Properties and Swelling Behaviors of a Polyacrylamide-Based Hydrogel Incorporating with Magnetic Particles. Xu C; Li B; Wang X Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830223 [TBL] [Abstract][Full Text] [Related]
23. Mussel-inspired injectable hydrogel and its counterpart for actuating proliferation and neuronal differentiation of retinal progenitor cells. Tang Z; Jiang F; Zhang Y; Zhang Y; YuanYang ; Huang X; Wang Y; Zhang D; Ni N; Liu F; Luo M; Fan X; Zhang W; Gu P Biomaterials; 2019 Feb; 194():57-72. PubMed ID: 30583149 [TBL] [Abstract][Full Text] [Related]
24. Poly(N-isopropylacrylamide)/polydopamine/clay nanocomposite hydrogels with stretchability, conductivity, and dual light- and thermo- responsive bending and adhesive properties. Di X; Kang Y; Li F; Yao R; Chen Q; Hang C; Xu Y; Wang Y; Sun P; Wu G Colloids Surf B Biointerfaces; 2019 May; 177():149-159. PubMed ID: 30721791 [TBL] [Abstract][Full Text] [Related]
25. Mussel-inspired nanozyme catalyzed conductive and self-setting hydrogel for adhesive and antibacterial bioelectronics. Jia Z; Lv X; Hou Y; Wang K; Ren F; Xu D; Wang Q; Fan K; Xie C; Lu X Bioact Mater; 2021 Sep; 6(9):2676-2687. PubMed ID: 33665500 [TBL] [Abstract][Full Text] [Related]
26. Mussel-Inspired Adhesive and Tough Hydrogel Based on Nanoclay Confined Dopamine Polymerization. Han L; Lu X; Liu K; Wang K; Fang L; Weng LT; Zhang H; Tang Y; Ren F; Zhao C; Sun G; Liang R; Li Z ACS Nano; 2017 Mar; 11(3):2561-2574. PubMed ID: 28245107 [TBL] [Abstract][Full Text] [Related]
27. Mussel-Inspired Flexible, Wearable, and Self-Adhesive Conductive Hydrogels for Strain Sensors. Lv R; Bei Z; Huang Y; Chen Y; Zheng Z; You Q; Zhu C; Cao Y Macromol Rapid Commun; 2020 Jan; 41(2):e1900450. PubMed ID: 31778252 [TBL] [Abstract][Full Text] [Related]
28. Construction of Biofunctionalized Anisotropic Hydrogel Micropatterns and Their Effect on Schwann Cell Behavior in Peripheral Nerve Regeneration. Li G; Li S; Zhang L; Chen S; Sun Z; Li S; Zhang L; Yang Y ACS Appl Mater Interfaces; 2019 Oct; 11(41):37397-37410. PubMed ID: 31525950 [TBL] [Abstract][Full Text] [Related]
29. Polydopamine Nanoparticles Modulating Stimuli-Responsive PNIPAM Hydrogels with Cell/Tissue Adhesiveness. Han L; Zhang Y; Lu X; Wang K; Wang Z; Zhang H ACS Appl Mater Interfaces; 2016 Oct; 8(42):29088-29100. PubMed ID: 27709887 [TBL] [Abstract][Full Text] [Related]
30. Polydopamine nanoparticles and hyaluronic acid hydrogels for mussel-inspired tissue adhesive nanocomposites. Pandey N; Soto-Garcia L; Yaman S; Kuriakose A; Rivera AU; Jones V; Liao J; Zimmern P; Nguyen KT; Hong Y Biomater Adv; 2022 Mar; 134():112589. PubMed ID: 35525749 [TBL] [Abstract][Full Text] [Related]
31. Stimuli-Responsive Conductive Nanocomposite Hydrogels with High Stretchability, Self-Healing, Adhesiveness, and 3D Printability for Human Motion Sensing. Deng Z; Hu T; Lei Q; He J; Ma PX; Guo B ACS Appl Mater Interfaces; 2019 Feb; 11(7):6796-6808. PubMed ID: 30673228 [TBL] [Abstract][Full Text] [Related]
32. An Injectable Hybrid Hydrogel with Oriented Short Fibers Induces Unidirectional Growth of Functional Nerve Cells. Omidinia-Anarkoli A; Boesveld S; Tuvshindorj U; Rose JC; Haraszti T; De Laporte L Small; 2017 Sep; 13(36):. PubMed ID: 28783255 [TBL] [Abstract][Full Text] [Related]
33. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering. Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733 [TBL] [Abstract][Full Text] [Related]
34. Mussel-Inspired Redox-Active and Hydrophilic Conductive Polymer Nanoparticles for Adhesive Hydrogel Bioelectronics. Gan D; Shuai T; Wang X; Huang Z; Ren F; Fang L; Wang K; Xie C; Lu X Nanomicro Lett; 2020 Aug; 12(1):169. PubMed ID: 34138168 [TBL] [Abstract][Full Text] [Related]
35. A mussel-inspired carboxymethyl cellulose hydrogel with enhanced adhesiveness through enzymatic crosslinking. Zhong Y; Wang J; Yuan Z; Wang Y; Xi Z; Li L; Liu Z; Guo X Colloids Surf B Biointerfaces; 2019 Jul; 179():462-469. PubMed ID: 31005741 [TBL] [Abstract][Full Text] [Related]
37. Advances of Mussel-Inspired Nanocomposite Hydrogels in Biomedical Applications. Ma H; Qiao X; Han L Biomimetics (Basel); 2023 Mar; 8(1):. PubMed ID: 36975358 [TBL] [Abstract][Full Text] [Related]
38. Mussel-inspired self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase and their applications in flexible sensors. Li S; Zhou H; Li Y; Jin X; Liu H; Lai J; Wu Y; Chen W; Ma A J Colloid Interface Sci; 2022 Feb; 607(Pt 1):431-439. PubMed ID: 34509117 [TBL] [Abstract][Full Text] [Related]
39. Anisotropic hydrogels formed by magnetically-oriented nanoclay suspensions for wound dressings. Yook S; Shams Es-Haghi S; Yildirim A; Mutlu Z; Cakmak M Soft Matter; 2019 Dec; 15(47):9733-9741. PubMed ID: 31742299 [TBL] [Abstract][Full Text] [Related]
40. A high-strength double network polydopamine nanocomposite hydrogel for adhesion under seawater. Liang M; He C; Dai J; Ren P; Fu Y; Wang F; Ge X; Zhang T; Lu Z J Mater Chem B; 2020 Sep; 8(36):8232-8241. PubMed ID: 32667027 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]