BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31659918)

  • 1. NADPH oxidase: a therapeutic target for hyperoxaluria-induced oxidative stress - an update.
    Joshi S; Khan SR
    Future Med Chem; 2019 Dec; 11(23):2975-2978. PubMed ID: 31659918
    [No Abstract]   [Full Text] [Related]  

  • 2. Targeting NADPH oxidases in vascular pharmacology.
    Schramm A; Matusik P; Osmenda G; Guzik TJ
    Vascul Pharmacol; 2012; 56(5-6):216-31. PubMed ID: 22405985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current status of NADPH oxidase research in cardiovascular pharmacology.
    Rodiño-Janeiro BK; Paradela-Dobarro B; Castiñeiras-Landeira MI; Raposeiras-Roubín S; González-Juanatey JR; Alvarez E
    Vasc Health Risk Manag; 2013; 9():401-28. PubMed ID: 23983473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual inhibition of NADPH oxidases and xanthine oxidase potently prevents salt-induced stroke in stroke-prone spontaneously hypertensive rats.
    Ngarashi D; Fujikawa K; Ferdaus MZ; Zahid HM; Ohara H; Nabika T
    Hypertens Res; 2019 Jul; 42(7):981-989. PubMed ID: 30850755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of endoplasmic reticulum stress inhibition on hyperoxaluria-induced oxidative stress: influence on cellular ROS sources.
    Bhardwaj R; Tandon C; Dhawan DK; Kaur T
    World J Urol; 2017 Dec; 35(12):1955-1965. PubMed ID: 28840362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NADPH oxidase is a primary target for antioxidant effects by inorganic nitrite in lipopolysaccharide-induced oxidative stress in mice and in macrophage cells.
    Sui Y; Tian R; Lu N
    Nitric Oxide; 2019 Aug; 89():46-53. PubMed ID: 31063820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid β induces NLRP3 inflammasome activation in retinal pigment epithelial cells via NADPH oxidase- and mitochondria-dependent ROS production.
    Wang K; Yao Y; Zhu X; Zhang K; Zhou F; Zhu L
    J Biochem Mol Toxicol; 2017 Jun; 31(6):. PubMed ID: 28004443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NADPH oxidases: novel therapeutic targets for neurodegenerative diseases.
    Gao HM; Zhou H; Hong JS
    Trends Pharmacol Sci; 2012 Jun; 33(6):295-303. PubMed ID: 22503440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2020, A Decisive Decade for NADPH Oxidases Inhibitors.
    Kovacic H
    Antioxid Redox Signal; 2020 Aug; 33(5):329-331. PubMed ID: 32122175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NOX toolbox: validating the role of NADPH oxidases in physiology and disease.
    Altenhöfer S; Kleikers PW; Radermacher KA; Scheurer P; Rob Hermans JJ; Schiffers P; Ho H; Wingler K; Schmidt HH
    Cell Mol Life Sci; 2012 Jul; 69(14):2327-43. PubMed ID: 22648375
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opportunities for future therapeutic interventions for hyperoxaluria: targeting oxidative stress.
    Joshi S; Khan SR
    Expert Opin Ther Targets; 2019 May; 23(5):379-391. PubMed ID: 30905219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NADPH Oxidase-Derived ROS Signaling and Therapeutic Opportunities.
    Peshavariya H
    Curr Pharm Des; 2015; 21(41):5931-2. PubMed ID: 26537745
    [No Abstract]   [Full Text] [Related]  

  • 13. NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications.
    Urner S; Ho F; Jha JC; Ziegler D; Jandeleit-Dahm K
    Antioxid Redox Signal; 2020 Aug; 33(6):415-434. PubMed ID: 32008354
    [No Abstract]   [Full Text] [Related]  

  • 14. Chronic intake of red wine polyphenols by young rats prevents aging-induced endothelial dysfunction and decline in physical performance: role of NADPH oxidase.
    Dal-Ros S; Zoll J; Lang AL; Auger C; Keller N; Bronner C; Geny B; Schini-Kerth VB
    Biochem Biophys Res Commun; 2011 Jan; 404(2):743-9. PubMed ID: 21167817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Apocynin attenuates pressure overload-induced cardiac hypertrophy in rats by reducing levels of reactive oxygen species.
    Liu J; Zhou J; An W; Lin Y; Yang Y; Zang W
    Can J Physiol Pharmacol; 2010 Jul; 88(7):745-52. PubMed ID: 20651822
    [TBL] [Abstract][Full Text] [Related]  

  • 16. (-)-Epicatechin and its metabolites prevent palmitate-induced NADPH oxidase upregulation, oxidative stress and insulin resistance in HepG2 cells.
    Cremonini E; Oteiza PI
    Arch Biochem Biophys; 2018 May; 646():55-63. PubMed ID: 29608879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the methoxyphenol apocynin, a vascular NADPH oxidase inhibitor, as a chemopreventative agent in the potential treatment of cardiovascular diseases.
    Yu J; Weïwer M; Linhardt RJ; Dordick JS
    Curr Vasc Pharmacol; 2008 Jul; 6(3):204-17. PubMed ID: 18673160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH oxidase as a therapeutic target for oxalate induced injury in kidneys.
    Joshi S; Peck AB; Khan SR
    Oxid Med Cell Longev; 2013; 2013():462361. PubMed ID: 23840917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of NADPH oxidases in the redox biology of liver fibrosis.
    Crosas-Molist E; Fabregat I
    Redox Biol; 2015 Dec; 6():106-111. PubMed ID: 26204504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The NADPH Oxidase Family and Its Inhibitors.
    Chocry M; Leloup L
    Antioxid Redox Signal; 2020 Aug; 33(5):332-353. PubMed ID: 31826639
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.