These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 316601)

  • 1. The relationship between stimulus parameters and phosphene threshold/brightness, during stimulation of human visual cortex.
    Henderson DC; Evans JR; Dobelle WH
    Trans Am Soc Artif Intern Organs; 1979; 25():367-71. PubMed ID: 316601
    [No Abstract]   [Full Text] [Related]  

  • 2. Electrical stimulation of human visual cortex: the effect of stimulus parameters on phosphene threshold.
    Girvin JP; Evans JR; Dobelle WH; Mladejovsky MG; Henderson DC; Abramov I; Gordon J; Turkel J
    Sens Processes; 1979 Mar; 3(1):66-81. PubMed ID: 515742
    [No Abstract]   [Full Text] [Related]  

  • 3. Brightness of phosphenes elicited by electrical stimulation of human visual cortex.
    Evans JR; Gordon J; Abramov I; Mladejovsky MG; Dobelle WH
    Sens Processes; 1979 Mar; 3(1):82-94. PubMed ID: 515743
    [No Abstract]   [Full Text] [Related]  

  • 4. Computer-controlled stimulation in the assessment of electrical characteristics for cortical phosphene generation for a visual prosthesis.
    Record P; Williams E; Hitchcock E; Ahmon M
    J Med Eng Technol; 1989; 13(1-2):52-6. PubMed ID: 2786566
    [No Abstract]   [Full Text] [Related]  

  • 5. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind.
    Dobelle WH; Mladejovsky MG
    J Physiol; 1974 Dec; 243(2):553-76. PubMed ID: 4449074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Stimulation of Visual Cortex Produces Form Vision in Sighted and Blind Humans.
    Beauchamp MS; Oswalt D; Sun P; Foster BL; Magnotti JF; Niketeghad S; Pouratian N; Bosking WH; Yoshor D
    Cell; 2020 May; 181(4):774-783.e5. PubMed ID: 32413298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parameters of phosphene-inducing electric stimulation of the cat visual cortex via implanted surface and intracortical electrodes.
    Baziyan BK; Gordeev SA; Ivanova ME; Ortmann VV
    Bull Exp Biol Med; 2008 Jan; 145(1):4-6. PubMed ID: 19023989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical Stimulation of Visual Cortex: Relevance for the Development of Visual Cortical Prosthetics.
    Bosking WH; Beauchamp MS; Yoshor D
    Annu Rev Vis Sci; 2017 Sep; 3():141-166. PubMed ID: 28753382
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-dependent changes in cortical excitability after prolonged visual deprivation.
    Pitskel NB; Merabet LB; Ramos-Estebanez C; Kauffman T; Pascual-Leone A
    Neuroreport; 2007 Oct; 18(16):1703-7. PubMed ID: 17921872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The effects of electric stimulation of the visual cortex of the cat in a behavior model of placing reaction].
    Polianskiĭ VB; Liamin OI; Ruderman GL
    Fiziol Zh SSSR Im I M Sechenova; 1983 May; 69(5):606-13. PubMed ID: 6873368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in visual cortex excitability in blind subjects as demonstrated by transcranial magnetic stimulation.
    Gothe J; Brandt SA; Irlbacher K; Röricht S; Sabel BA; Meyer BU
    Brain; 2002 Mar; 125(Pt 3):479-90. PubMed ID: 11872606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Visual sensations produced by intracortical microstimulation of the human occipital cortex.
    Bak M; Girvin JP; Hambrecht FT; Kufta CV; Loeb GE; Schmidt EM
    Med Biol Eng Comput; 1990 May; 28(3):257-9. PubMed ID: 2377008
    [No Abstract]   [Full Text] [Related]  

  • 14. Shape perception via a high-channel-count neuroprosthesis in monkey visual cortex.
    Chen X; Wang F; Fernandez E; Roelfsema PR
    Science; 2020 Dec; 370(6521):1191-1196. PubMed ID: 33273097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A method for plotting the optimum positions of an array of cortical electrical phosphenes.
    Everitt BS; Rushton DN
    Biometrics; 1978 Sep; 34(3):399-410. PubMed ID: 719122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Resolving capacity of the human visual cortex during direct electrical stimulation].
    Kompaneets EB
    Dokl Akad Nauk SSSR; 1985; 281(4):1004-6. PubMed ID: 4006686
    [No Abstract]   [Full Text] [Related]  

  • 18. Enhanced excitability of the human visual cortex induced by short-term light deprivation.
    Boroojerdi B; Bushara KO; Corwell B; Immisch I; Battaglia F; Muellbacher W; Cohen LG
    Cereb Cortex; 2000 May; 10(5):529-34. PubMed ID: 10847602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimized single pulse stimulation strategy for retinal implants.
    Savage CO; Grayden DB; Meffin H; Burkitt AN
    J Neural Eng; 2013 Feb; 10(1):016003. PubMed ID: 23220887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobility performance with a pixelized vision system.
    Cha K; Horch KW; Normann RA
    Vision Res; 1992 Jul; 32(7):1367-72. PubMed ID: 1455709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.