BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31660438)

  • 1. Rapid Cycling and Exceptional Yield in a Metal-Organic Framework Water Harvester.
    Hanikel N; Prévot MS; Fathieh F; Kapustin EA; Lyu H; Wang H; Diercks NJ; Glover TG; Yaghi OM
    ACS Cent Sci; 2019 Oct; 5(10):1699-1706. PubMed ID: 31660438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-yield solar-driven atmospheric water harvesting of metal-organic-framework-derived nanoporous carbon with fast-diffusion water channels.
    Song Y; Xu N; Liu G; Qi H; Zhao W; Zhu B; Zhou L; Zhu J
    Nat Nanotechnol; 2022 Aug; 17(8):857-863. PubMed ID: 35618801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption-based atmospheric water harvesting device for arid climates.
    Kim H; Rao SR; Kapustin EA; Zhao L; Yang S; Yaghi OM; Wang EN
    Nat Commun; 2018 Mar; 9(1):1191. PubMed ID: 29568033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Environmentally adaptive MOF-based device enables continuous self-optimizing atmospheric water harvesting.
    Almassad HA; Abaza RI; Siwwan L; Al-Maythalony B; Cordova KE
    Nat Commun; 2022 Aug; 13(1):4873. PubMed ID: 35986024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Solar-Driven Water Harvesting from Arid Air with Metal-Organic Frameworks Modified by Hygroscopic Salt.
    Xu J; Li T; Chao J; Wu S; Yan T; Li W; Cao B; Wang R
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5202-5210. PubMed ID: 31943677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca-MOF-Derived Porous Sorbents for High-Yield Solar-Driven Atmosphere Water Harvesting.
    Hu Y; Wang Y; Fang Z; Yao B; Ye Z; Peng X
    ACS Appl Mater Interfaces; 2023 Sep; 15(38):44942-44952. PubMed ID: 37703912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sandwich-Structured Carbon Paper/Metal-Organic Framework Monoliths for Flexible Solar-Powered Atmospheric Water Harvesting On Demand.
    Tao Y; Wu Q; Huang C; Su W; Ying Y; Zhu D; Li H
    ACS Appl Mater Interfaces; 2022 Mar; 14(8):10966-10975. PubMed ID: 35179350
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling Continuous and Improved Solar-Driven Atmospheric Water Harvesting with Ti
    Wu Q; Su W; Li Q; Tao Y; Li H
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38906-38915. PubMed ID: 34351132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viability of a practical multicyclic sorption-based water harvester with improved water yield.
    Wang W; Pan Q; Xing Z; Liu X; Dai Y; Wang R; Ge T
    Water Res; 2022 Mar; 211():118029. PubMed ID: 35030362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exceptional water production yield enabled by batch-processed portable water harvester in semi-arid climate.
    Shan H; Li C; Chen Z; Ying W; Poredoš P; Ye Z; Pan Q; Wang J; Wang R
    Nat Commun; 2022 Sep; 13(1):5406. PubMed ID: 36109494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LiCl
    Guo S; Hu Y; Fang Z; Yao B; Peng X
    RSC Adv; 2024 May; 14(22):15619-15626. PubMed ID: 38746833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Atmospheric Water-Harvester with Ultrahigh Uptake-Release Efficiency at Low Humidity.
    Luo Q; Chen M; Yu D; Zhang T; Zhao J; Zhang L; Han X; Zhou M; Hou Y; Zheng Y
    ACS Nano; 2024 Jun; 18(22):14650-14660. PubMed ID: 38761383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hygroscopic-Microgels-Enabled Rapid Water Extraction from Arid Air.
    Guan W; Lei C; Guo Y; Shi W; Yu G
    Adv Mater; 2024 Mar; 36(12):e2207786. PubMed ID: 36239247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistically Enabling Fast-Cycling and High-Yield Atmospheric Water Harvesting with Plasma-Treated Magnetic Flower-Like Porous Carbons.
    Ying Y; Yang G; Tao Y; Wu Q; Li H
    Adv Sci (Weinh); 2023 Jan; 10(3):e2204840. PubMed ID: 36424187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Atmospheric Water Harvesting with Sunlight-Activated Sorption Ratcheting.
    Park H; Haechler I; Schnoering G; Ponte MD; Schutzius TM; Poulikakos D
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2237-2245. PubMed ID: 34974699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring the Desorption Behavior of Hygroscopic Gels for Atmospheric Water Harvesting in Arid Climates.
    Lu H; Shi W; Zhang JH; Chen AC; Guan W; Lei C; Greer JR; Boriskina SV; Yu G
    Adv Mater; 2022 Sep; 34(37):e2205344. PubMed ID: 35901232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Hydrolytically Stable Cu(II)-Based Metal-Organic Framework with Easily Accessible Ligands for Water Harvesting.
    Wang L; Wang K; An HT; Huang H; Xie LH; Li JR
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):49509-49518. PubMed ID: 34617718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Roadmap to Sorption-Based Atmospheric Water Harvesting: From Molecular Sorption Mechanism to Sorbent Design and System Optimization.
    Yang K; Pan T; Lei Q; Dong X; Cheng Q; Han Y
    Environ Sci Technol; 2021 May; 55(10):6542-6560. PubMed ID: 33914502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneously Enhanced Hydrophilicity and Stability of a Metal-Organic Framework via Post-Synthetic Modification for Water Vapor Sorption/Desorption.
    Luo TY; Park S; Chen TH; Prerna ; Patel R; Li X; Ilja Siepmann J; Caratzoulas S; Xia Z; Tsapatsis M
    Angew Chem Int Ed Engl; 2022 Nov; 61(44):e202209034. PubMed ID: 35929949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Fine-Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control.
    AbdulHalim RG; Bhatt PM; Belmabkhout Y; Shkurenko A; Adil K; Barbour LJ; Eddaoudi M
    J Am Chem Soc; 2017 Aug; 139(31):10715-10722. PubMed ID: 28661666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.