BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

470 related articles for article (PubMed ID: 31660856)

  • 1. A hierarchical integration deep flexible neural forest framework for cancer subtype classification by integrating multi-omics data.
    Xu J; Wu P; Chen Y; Meng Q; Dawood H; Dawood H
    BMC Bioinformatics; 2019 Oct; 20(1):527. PubMed ID: 31660856
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multimodal graph neural network framework for cancer molecular subtype classification.
    Li B; Nabavi S
    BMC Bioinformatics; 2024 Jan; 25(1):27. PubMed ID: 38225583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A laminar augmented cascading flexible neural forest model for classification of cancer subtypes based on gene expression data.
    Zhong L; Meng Q; Chen Y; Du L; Wu P
    BMC Bioinformatics; 2021 Oct; 22(1):475. PubMed ID: 34600466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning based feature-level integration of multi-omics data for breast cancer patients survival analysis.
    Tong L; Mitchel J; Chatlin K; Wang MD
    BMC Med Inform Decis Mak; 2020 Sep; 20(1):225. PubMed ID: 32933515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.
    Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BCDForest: a boosting cascade deep forest model towards the classification of cancer subtypes based on gene expression data.
    Guo Y; Liu S; Li Z; Shang X
    BMC Bioinformatics; 2018 Apr; 19(Suppl 5):118. PubMed ID: 29671390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supervised graph contrastive learning for cancer subtype identification through multi-omics data integration.
    Chen F; Peng W; Dai W; Wei S; Fu X; Liu L; Liu L
    Health Inf Sci Syst; 2024 Dec; 12(1):12. PubMed ID: 38404715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. moSCminer: a cell subtype classification framework based on the attention neural network integrating the single-cell multi-omics dataset on the cloud.
    Choi JM; Park C; Chae H
    PeerJ; 2024; 12():e17006. PubMed ID: 38426141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MMDAE-HGSOC: A novel method for high-grade serous ovarian cancer molecular subtypes classification based on multi-modal deep autoencoder.
    Wang HQ; Li HL; Han JL; Feng ZP; Deng HX; Han X
    Comput Biol Chem; 2023 Aug; 105():107906. PubMed ID: 37336028
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DeepAutoGlioma: a deep learning autoencoder-based multi-omics data integration and classification tools for glioma subtyping.
    Munquad S; Das AB
    BioData Min; 2023 Nov; 16(1):32. PubMed ID: 37968655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MODILM: towards better complex diseases classification using a novel multi-omics data integration learning model.
    Zhong Y; Peng Y; Lin Y; Chen D; Zhang H; Zheng W; Chen Y; Wu C
    BMC Med Inform Decis Mak; 2023 May; 23(1):82. PubMed ID: 37147619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MoGCN: A Multi-Omics Integration Method Based on Graph Convolutional Network for Cancer Subtype Analysis.
    Li X; Ma J; Leng L; Han M; Li M; He F; Zhu Y
    Front Genet; 2022; 13():806842. PubMed ID: 35186034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating multi-omics data by learning modality invariant representations for improved prediction of overall survival of cancer.
    Tong L; Wu H; Wang MD
    Methods; 2021 May; 189():74-85. PubMed ID: 32763377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction.
    Tan K; Huang W; Hu J; Dong S
    BMC Med Inform Decis Mak; 2020 Jul; 20(Suppl 3):129. PubMed ID: 32646413
    [TBL] [Abstract][Full Text] [Related]  

  • 17. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks.
    Choi JM; Chae H
    BMC Bioinformatics; 2023 Apr; 24(1):169. PubMed ID: 37101124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
    Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A denoised multi-omics integration framework for cancer subtype classification and survival prediction.
    Pang J; Liang B; Ding R; Yan Q; Chen R; Xu J
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37594302
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping.
    Cai Y; Wang S
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.