These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31661300)

  • 21. A Non-Vector Approach to Increase Lipid Levels in the Microalga
    Szpyrka E; Broda D; Oklejewicz B; Podbielska M; Slowik-Borowiec M; Jagusztyn B; Chrzanowski G; Kus-Liskiewicz M; Duda M; Zuczek J; Wnuk M; Lewinska A
    Molecules; 2020 Jan; 25(2):. PubMed ID: 31936538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differences between attached and suspended microalgal cells in ssPBR from the perspective of physiological properties.
    Lin-Lan Z; Jing-Han W; Hong-Ying H
    J Photochem Photobiol B; 2018 Apr; 181():164-169. PubMed ID: 29571071
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Heterotrophic cultivation of microalgae for production of biodiesel.
    Mohamed MS; Wei LZ; Ariff AB
    Recent Pat Biotechnol; 2011 Aug; 5(2):95-107. PubMed ID: 21707527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Vibration-induced stress priming during seed culture increases microalgal biomass in high shear field-cultivation.
    Paik SM; Jin E; Sim SJ; Jeon NL
    Bioresour Technol; 2018 Apr; 254():340-346. PubMed ID: 29397260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microalgal carbohydrates: an overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels.
    Markou G; Angelidaki I; Georgakakis D
    Appl Microbiol Biotechnol; 2012 Nov; 96(3):631-45. PubMed ID: 22996277
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Engineered chlorophyll catabolism conferring predator resistance for microalgal biomass production.
    Kashiyama Y; Ishizuka Y; Terauchi I; Matsuda T; Maeda Y; Yoshino T; Matsumoto M; Yabuki A; Bowler C; Tanaka T
    Metab Eng; 2021 Jul; 66():79-86. PubMed ID: 33862197
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perspective for the use of genetic transformants in order to enhance the synthesis of the desired metabolites: Engineering chloroplasts of microalgae for the production of bioactive compounds.
    Johanningmeier U; Fischer D
    Adv Exp Med Biol; 2010; 698():144-51. PubMed ID: 21520709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improving the sunlight-to-biomass conversion efficiency in microalgal biofactories.
    Wobbe L; Remacle C
    J Biotechnol; 2015 May; 201():28-42. PubMed ID: 25160918
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae.
    Anwar M; Lou S; Chen L; Li H; Hu Z
    Bioresour Technol; 2019 Nov; 292():121972. PubMed ID: 31444119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic perfusion bioreactor for optimization of microalgal lipid productivity.
    Paik SM; Sim SJ; Jeon NL
    Bioresour Technol; 2017 Jun; 233():433-437. PubMed ID: 28279610
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Outdoor Cultivation of Marine Diatoms for Year-Round Production of Biofuels.
    Matsumoto M; Nojima D; Nonoyama T; Ikeda K; Maeda Y; Yoshino T; Tanaka T
    Mar Drugs; 2017 Mar; 15(4):. PubMed ID: 28346334
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a Two-Stage Microalgae Dewatering Process - A Life Cycle Assessment Approach.
    Soomro RR; Ndikubwimana T; Zeng X; Lu Y; Lin L; Danquah MK
    Front Plant Sci; 2016; 7():113. PubMed ID: 26904075
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Valorisation of biodiesel production wastes: Anaerobic digestion of residual Tetraselmis suecica biomass and co-digestion with glycerol.
    Santos-Ballardo DU; Font-Segura X; Ferrer AS; Barrena R; Rossi S; Valdez-Ortiz A
    Waste Manag Res; 2015 Mar; 33(3):250-7. PubMed ID: 25737140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.
    Banerjee C; Dubey KK; Shukla P
    Front Microbiol; 2016; 7():432. PubMed ID: 27065986
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Marine microalgae.
    Matsunaga T; Takeyama H; Miyashita H; Yokouchi H
    Adv Biochem Eng Biotechnol; 2005; 96():165-88. PubMed ID: 16566091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microalgae as Solar-Powered Protein Factories.
    Hempel F; Maier UG
    Adv Exp Med Biol; 2016; 896():241-62. PubMed ID: 27165330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrolysis of microalgal biomass using ruminal microorganisms as a pretreatment to increase methane recovery.
    Barragán-Trinidad M; Carrillo-Reyes J; Buitrón G
    Bioresour Technol; 2017 Nov; 244(Pt 1):100-107. PubMed ID: 28779660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Flashing light in microalgae biotechnology.
    Abu-Ghosh S; Fixler D; Dubinsky Z; Iluz D
    Bioresour Technol; 2016 Mar; 203():357-63. PubMed ID: 26747205
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancement of lipid accumulation in microalgae by metabolic engineering.
    Sun XM; Ren LJ; Zhao QY; Ji XJ; Huang H
    Biochim Biophys Acta Mol Cell Biol Lipids; 2019 Apr; 1864(4):552-566. PubMed ID: 30308323
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterotrophic cultivation of microalgae for pigment production: A review.
    Hu J; Nagarajan D; Zhang Q; Chang JS; Lee DJ
    Biotechnol Adv; 2018; 36(1):54-67. PubMed ID: 28947090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.