BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 31661645)

  • 21. Effects of growth stage on enzymatic saccharification and simultaneous saccharification and fermentation of bamboo shoots for bioethanol production.
    Shimokawa T; Ishida M; Yoshida S; Nojiri M
    Bioresour Technol; 2009 Dec; 100(24):6651-4. PubMed ID: 19664918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell surface display of cellulase activity-free xylanase enzyme on Saccharomyces Cerevisiae EBY100.
    Yeasmin S; Kim CH; Park HJ; Sheikh MI; Lee JY; Kim JW; Back KK; Kim SH
    Appl Biochem Biotechnol; 2011 Jun; 164(3):294-304. PubMed ID: 21161608
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Optimization of corn stover hydrolysis by fed-batch process].
    Song A; Ren T; Zhang L; Wang F; Xie H
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):393-7. PubMed ID: 21650019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. De-ashing treatment of corn stover improves the efficiencies of enzymatic hydrolysis and consequent ethanol fermentation.
    He Y; Fang Z; Zhang J; Li X; Bao J
    Bioresour Technol; 2014 Oct; 169():552-558. PubMed ID: 25089897
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic hydrolysis of water hyacinth biomass for the production of ethanol: optimization of driving parameters.
    Ganguly A; Das S; Bhattacharya A; Dey A; Chatterjee PK
    Indian J Exp Biol; 2013 Jul; 51(7):556-66. PubMed ID: 23898555
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced cellulase recovery without β-glucosidase supplementation for cellulosic ethanol production using an engineered strain and surfactant.
    Huang R; Guo H; Su R; Qi W; He Z
    Biotechnol Bioeng; 2017 Mar; 114(3):543-551. PubMed ID: 27696443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pretreatment of corn stover by soaking in aqueous ammonia.
    Kim TH; Lee YY
    Appl Biochem Biotechnol; 2005; 121-124():1119-31. PubMed ID: 15930585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ethanol production by simultaneous saccharification and cofermentation of pretreated corn stalk.
    Zhao W; Zhao F; Zhang S; Gong Q; Chen G
    J Basic Microbiol; 2019 Jul; 59(7):744-753. PubMed ID: 31087563
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.
    Zhu J; Rong Y; Yang J; Zhou X; Xu Y; Zhang L; Chen J; Yong Q; Yu S
    Appl Biochem Biotechnol; 2015 Jul; 176(5):1370-81. PubMed ID: 25947618
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.
    Aghazadeh M; Ladisch MR; Engelberth AS
    Biotechnol Prog; 2016 Jul; 32(4):929-37. PubMed ID: 27090191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An isolated Amycolatopsis sp. GDS for cellulase and xylanase production using agricultural waste biomass.
    Kshirsagar SD; Saratale GD; Saratale RG; Govindwar SP; Oh MK
    J Appl Microbiol; 2016 Jan; 120(1):112-25. PubMed ID: 26507788
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Construction of a trifunctional cellulase and expression in Saccharomyces cerevisiae using a fusion protein.
    Liu ZL; Li HN; Song HT; Xiao WJ; Xia WC; Liu XP; Jiang ZB
    BMC Biotechnol; 2018 Jul; 18(1):43. PubMed ID: 30005661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of a novel GH10 xylanase with a carbohydrate binding module from Aspergillus sulphureus and its synergistic hydrolysis activity with cellulase.
    Liu Y; Wang J; Bao C; Dong B; Cao Y
    Int J Biol Macromol; 2021 Jul; 182():701-711. PubMed ID: 33862072
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water.
    Lu X; Zheng X; Li X; Zhao J
    Biotechnol Biofuels; 2016; 9():118. PubMed ID: 27274766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular cloning and overexpression of an endo-β-1,4-xylanase gene from Aspergillus niger in industrial Saccharomyces cerevisiae YS2 strain.
    Tian B; Xu Y; Cai W; Huang Q; Gao Y; Li X; Huang J
    Appl Biochem Biotechnol; 2013 May; 170(2):320-8. PubMed ID: 23508862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Utilization of dry distiller's grain and solubles as nutrient supplement in the simultaneous saccharification and ethanol fermentation at high solids loading of corn stover.
    Bi D; Chu D; Zhu P; Lu C; Fan C; Zhang J; Bao J
    Biotechnol Lett; 2011 Feb; 33(2):273-6. PubMed ID: 20953669
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis.
    Wang FQ; Xie H; Chen W; Wang ET; Du FG; Song AD
    Bioresour Technol; 2013 Sep; 144():572-8. PubMed ID: 23896439
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heterologous expression of cellulase genes in natural Saccharomyces cerevisiae strains.
    Davison SA; den Haan R; van Zyl WH
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8241-54. PubMed ID: 27470141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of cell-tethered cellulase activity in recombinant strains of Saccharomyces cerevisiae.
    Chetty BJ; Inokuma K; Hasunuma T; van Zyl WH; den Haan R
    Appl Microbiol Biotechnol; 2022 Sep; 106(18):6347-6361. PubMed ID: 35951080
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bioconversion of corn stover derived pentose and hexose to ethanol using cascade simultaneous saccharification and fermentation (CSSF).
    Li X; Kim TH
    Bioprocess Biosyst Eng; 2012 Jan; 35(1-2):99-104. PubMed ID: 21909666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.