These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31661795)

  • 1. Crosslinking Kinetics of Methylcellulose Aqueous Solution and Its Potential as a Scaffold for Tissue Engineering.
    Niemczyk-Soczynska B; Gradys A; Kolbuk D; Krzton-Maziopa A; Sajkiewicz P
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31661795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A methylcellulose/agarose hydrogel as an innovative scaffold for tissue engineering.
    Niemczyk-Soczynska B; Gradys A; Kolbuk D; Krzton-Maziopa A; Rogujski P; Stanaszek L; Lukomska B; Sajkiewicz P
    RSC Adv; 2022 Sep; 12(41):26882-26894. PubMed ID: 36320849
    [No Abstract]   [Full Text] [Related]  

  • 3. Toward a Better Understanding of the Gelation Mechanism of Methylcellulose via Systematic DSC Studies.
    Niemczyk-Soczynska B; Sajkiewicz P; Gradys A
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-crosslinked methylcellulose hydrogels for 3D bioprinting applications.
    Shin JY; Yeo YH; Jeong JE; Park SA; Park WH
    Carbohydr Polym; 2020 Jun; 238():116192. PubMed ID: 32299570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of the subtle trade-off between physical stability and thermo-responsiveness in crosslinked methylcellulose hydrogels.
    Bonetti L; De Nardo L; Variola F; Fare' S
    Soft Matter; 2020 Jun; 16(24):5577-5587. PubMed ID: 32406462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A rapid temperature-responsive sol-gel reversible poly(N-isopropylacrylamide)-g-methylcellulose copolymer hydrogel.
    Liu W; Zhang B; Lu WW; Li X; Zhu D; De Yao K; Wang Q; Zhao C; Wang C
    Biomaterials; 2004 Jul; 25(15):3005-12. PubMed ID: 14967533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inverse Thermoreversible Mechanical Stiffening and Birefringence in a Methylcellulose/Cellulose Nanocrystal Hydrogel.
    Hynninen V; Hietala S; McKee JR; Murtomäki L; Rojas OJ; Ikkala O; Nonappa
    Biomacromolecules; 2018 Jul; 19(7):2795-2804. PubMed ID: 29733648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosslinking strategies in modulating methylcellulose hydrogel properties.
    Bonetti L; De Nardo L; Farè S
    Soft Matter; 2023 Oct; 19(41):7869-7884. PubMed ID: 37817578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of bassorin (derived from gum tragacanth) and halloysite nanotubes on physicochemical properties and the osteoconductivity of methylcellulose-based injectable hydrogels.
    Varshosaz J; Sajadi-Javan ZS; Kouhi M; Mirian M
    Int J Biol Macromol; 2021 Dec; 192():869-882. PubMed ID: 34634330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-crosslinked, self-healing and thermo-responsive methylcellulose/chitosan oligomer copolymer hydrogels.
    Yeo YH; Park WH
    Carbohydr Polym; 2021 Apr; 258():117705. PubMed ID: 33593575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration.
    Kim MH; Kim BS; Park H; Lee J; Park WH
    Int J Biol Macromol; 2018 Apr; 109():57-64. PubMed ID: 29246871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials.
    Bonetti L; De Nardo L; Farè S
    Tissue Eng Part B Rev; 2021 Oct; 27(5):486-513. PubMed ID: 33115329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methylcellulose/agarose hydrogel loaded with short electrospun PLLA/laminin fibers as an injectable scaffold for tissue engineering/3D cell culture model for tumour therapies.
    Niemczyk-Soczynska B; Kolbuk D; Mikulowski G; Ciechomska IA; Sajkiewicz P
    RSC Adv; 2023 Apr; 13(18):11889-11902. PubMed ID: 37077262
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro-DSC and rheological studies of interactions between methylcellulose and surfactants.
    Li L; Liu E; Lim CH
    J Phys Chem B; 2007 Jun; 111(23):6410-6. PubMed ID: 17516676
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemically Crosslinked Methylcellulose Substrates for Cell Sheet Engineering.
    Bonetti L; De Nardo L; Farè S
    Gels; 2021 Sep; 7(3):. PubMed ID: 34563027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Salt-assisted and salt-suppressed sol-gel transitions of methylcellulose in water.
    Xu Y; Wang C; Tam KC; Li L
    Langmuir; 2004 Feb; 20(3):646-52. PubMed ID: 15773087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation behaviors of thermo-responsive methylcellulose in water: A molecular dynamics simulation study.
    Yang Y; Wu W; Liu H; Xu H; Zhong Y; Zhang L; Chen Z; Sui X; Mao Z
    J Mol Graph Model; 2020 Jun; 97():107554. PubMed ID: 32035312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust methylcellulose hydrogels reinforced with chitin nanocrystals.
    Jung HS; Kim HC; Ho Park W
    Carbohydr Polym; 2019 Jun; 213():311-319. PubMed ID: 30879674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel.
    Park CH; Jeong L; Cho D; Kwon OH; Park WH
    Carbohydr Polym; 2013 Oct; 98(1):1179-85. PubMed ID: 23987461
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and evaluation of injectable thermosensitive penta-block copolymer hydrogel (PNIPAAm-PCL-PEG-PCL-PNIPAAm) and star-shaped poly(CL─CO─LA)-b-PEG for wound healing applications.
    Oroojalian F; Jahanafrooz Z; Chogan F; Rezayan AH; Malekzade E; Rezaei SJT; Nabid MR; Sahebkar A
    J Cell Biochem; 2019 Oct; 120(10):17194-17207. PubMed ID: 31104319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.