These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 31661798)

  • 1. Double-Diamond Model-Based Orientation Guidance in Wearable Human-Machine Navigation Systems for Blind and Visually Impaired People.
    Zhang X; Zhang H; Zhang L; Zhu Y; Hu F
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Wearable Haptics and Obstacle Avoidance for the Visually Impaired in Indoor Navigation: A User-Centered Approach.
    Barontini F; Catalano MG; Pallottino L; Leporini B; Bianchi M
    IEEE Trans Haptics; 2021; 14(1):109-122. PubMed ID: 32746372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary investigation of SEZUAL device for basic material identification and simple spatial navigation for blind and visually impaired people.
    Gabdreshov G; Magzymov D; Yensebayev N
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1343-1350. PubMed ID: 36756982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Haptic Assistive Technology for Individuals Who Are Blind or Visually Impaired.
    Pawluk DT; Adams RJ; Kitada R
    IEEE Trans Haptics; 2015; 8(3):258-78. PubMed ID: 26336151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PERCEPT: indoor navigation for the blind and visually impaired.
    Ganz A; Gandhi SR; Schafer J; Singh T; Puleo E; Mullett G; Wilson C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():856-9. PubMed ID: 22254445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A navigation aid for the blind using tactile-visual sensory substitution.
    Johnson LA; Higgins CM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6289-92. PubMed ID: 17945950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survey and analysis of the current status of research in the field of outdoor navigation for the blind.
    Lian Y; Liu DE; Ji WZ
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1657-1675. PubMed ID: 37402242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a wearable support system to aid the visually impaired in independent mobilization and navigation.
    Froneman T; van den Heever D; Dellimore K
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():783-786. PubMed ID: 29059989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.
    Lahav O; Gedalevitz H; Battersby S; Brown D; Evett L; Merritt P
    Disabil Rehabil; 2018 May; 40(9):1072-1084. PubMed ID: 28637136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System.
    Chen Z; Liu X; Kojima M; Huang Q; Arai T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Audible vision for the blind and visually impaired in indoor open spaces.
    Yu X; Ganz A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5110-3. PubMed ID: 23367078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface.
    Tachiquin R; Velázquez R; Del-Valle-Soto C; Gutiérrez CA; Carrasco M; De Fazio R; Trujillo-León A; Visconti P; Vidal-Verdú F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing the minimum range of a RGB-depth sensor to aid navigation in visually impaired individuals.
    Yang K; Wang K; Chen H; Bai J
    Appl Opt; 2018 Apr; 57(11):2809-2819. PubMed ID: 29714283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Unfolding Space Glove: A Wearable Spatio-Visual to Haptic Sensory Substitution Device for Blind People.
    Kilian J; Neugebauer A; Scherffig L; Wahl S
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobile assistive technologies for the visually impaired.
    Hakobyan L; Lumsden J; O'Sullivan D; Bartlett H
    Surv Ophthalmol; 2013; 58(6):513-28. PubMed ID: 24054999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent Head-Mounted Obstacle Avoidance Wearable for the Blind and Visually Impaired.
    Xu P; Song A; Wang K
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Auditory guidance systems for the visually impaired people].
    He J; Nie M; Luo L; Tong S; Niu J; Zhu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Apr; 27(2):467-70. PubMed ID: 20481341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Electromagnetic Sensor for the Autonomous Running of Visually Impaired and Blind Athletes (Part II: The Wearable Device).
    Pieralisi M; Di Mattia V; Petrini V; De Leo A; Manfredi G; Russo P; Scalise L; Cerri G
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28212348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation.
    Yang K; Wang K; Bergasa LM; Romera E; Hu W; Sun D; Sun J; Cheng R; Chen T; López E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Real-world Functional Tasks Using an Updated Oral Electronic Vision Device in Persons Blinded by Trauma.
    Grant P; Maeng M; Arango T; Hogle R; Szlyk J; Seiple W
    Optom Vis Sci; 2018 Sep; 95(9):766-773. PubMed ID: 30169354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.