BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 31661798)

  • 1. Double-Diamond Model-Based Orientation Guidance in Wearable Human-Machine Navigation Systems for Blind and Visually Impaired People.
    Zhang X; Zhang H; Zhang L; Zhu Y; Hu F
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrating Wearable Haptics and Obstacle Avoidance for the Visually Impaired in Indoor Navigation: A User-Centered Approach.
    Barontini F; Catalano MG; Pallottino L; Leporini B; Bianchi M
    IEEE Trans Haptics; 2021; 14(1):109-122. PubMed ID: 32746372
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preliminary investigation of SEZUAL device for basic material identification and simple spatial navigation for blind and visually impaired people.
    Gabdreshov G; Magzymov D; Yensebayev N
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1343-1350. PubMed ID: 36756982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing Haptic Assistive Technology for Individuals Who Are Blind or Visually Impaired.
    Pawluk DT; Adams RJ; Kitada R
    IEEE Trans Haptics; 2015; 8(3):258-78. PubMed ID: 26336151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PERCEPT: indoor navigation for the blind and visually impaired.
    Ganz A; Gandhi SR; Schafer J; Singh T; Puleo E; Mullett G; Wilson C
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():856-9. PubMed ID: 22254445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A navigation aid for the blind using tactile-visual sensory substitution.
    Johnson LA; Higgins CM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():6289-92. PubMed ID: 17945950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Survey and analysis of the current status of research in the field of outdoor navigation for the blind.
    Lian Y; Liu DE; Ji WZ
    Disabil Rehabil Assist Technol; 2024 May; 19(4):1657-1675. PubMed ID: 37402242
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a wearable support system to aid the visually impaired in independent mobilization and navigation.
    Froneman T; van den Heever D; Dellimore K
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():783-786. PubMed ID: 29059989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Virtual environment navigation with look-around mode to explore new real spaces by people who are blind.
    Lahav O; Gedalevitz H; Battersby S; Brown D; Evett L; Merritt P
    Disabil Rehabil; 2018 May; 40(9):1072-1084. PubMed ID: 28637136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System.
    Chen Z; Liu X; Kojima M; Huang Q; Arai T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Audible vision for the blind and visually impaired in indoor open spaces.
    Yu X; Ganz A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5110-3. PubMed ID: 23367078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wearable Urban Mobility Assistive Device for Visually Impaired Pedestrians Using a Smartphone and a Tactile-Foot Interface.
    Tachiquin R; Velázquez R; Del-Valle-Soto C; Gutiérrez CA; Carrasco M; De Fazio R; Trujillo-León A; Visconti P; Vidal-Verdú F
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450714
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reducing the minimum range of a RGB-depth sensor to aid navigation in visually impaired individuals.
    Yang K; Wang K; Chen H; Bai J
    Appl Opt; 2018 Apr; 57(11):2809-2819. PubMed ID: 29714283
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Unfolding Space Glove: A Wearable Spatio-Visual to Haptic Sensory Substitution Device for Blind People.
    Kilian J; Neugebauer A; Scherffig L; Wahl S
    Sensors (Basel); 2022 Feb; 22(5):. PubMed ID: 35271009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mobile assistive technologies for the visually impaired.
    Hakobyan L; Lumsden J; O'Sullivan D; Bartlett H
    Surv Ophthalmol; 2013; 58(6):513-28. PubMed ID: 24054999
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intelligent Head-Mounted Obstacle Avoidance Wearable for the Blind and Visually Impaired.
    Xu P; Song A; Wang K
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Auditory guidance systems for the visually impaired people].
    He J; Nie M; Luo L; Tong S; Niu J; Zhu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Apr; 27(2):467-70. PubMed ID: 20481341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Electromagnetic Sensor for the Autonomous Running of Visually Impaired and Blind Athletes (Part II: The Wearable Device).
    Pieralisi M; Di Mattia V; Petrini V; De Leo A; Manfredi G; Russo P; Scalise L; Cerri G
    Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28212348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unifying Terrain Awareness for the Visually Impaired through Real-Time Semantic Segmentation.
    Yang K; Wang K; Bergasa LM; Romera E; Hu W; Sun D; Sun J; Cheng R; Chen T; López E
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29748508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Performance of Real-world Functional Tasks Using an Updated Oral Electronic Vision Device in Persons Blinded by Trauma.
    Grant P; Maeng M; Arango T; Hogle R; Szlyk J; Seiple W
    Optom Vis Sci; 2018 Sep; 95(9):766-773. PubMed ID: 30169354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.