BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31661870)

  • 1. Detection of Participation and Training Task Difficulty Applied to the Multi-Sensor Systems of Rehabilitation Robots.
    Yan H; Wang H; Vladareanu L; Lin M; Vladareanu V; Li Y
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31661870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot.
    Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L
    J Healthc Eng; 2017; 2017():1523068. PubMed ID: 29065571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Motion Intention Acquisition Method of Lower Limb Rehabilitation Robot Based on Static Torque Sensors.
    Feng Y; Wang H; Vladareanu L; Chen Z; Jin D
    Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31390739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Research on assist-as-needed control strategy of wrist function-rehabilitation robot].
    Wang J; Zuo G; Zhang J; Shi C; Song T; Guo S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):129-135. PubMed ID: 32096386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons.
    Long Y; Du ZJ; Wang WD; Zhao GY; Xu GQ; He L; Mao XW; Dong W
    Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual Sensors for Advanced Controllers in Rehabilitation Robotics.
    Mancisidor A; Zubizarreta A; Cabanes I; Portillo E; Jung JH
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29510596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spring damping based control for a novel lower limb rehabilitation robot with active flexible training planning.
    Hu J; Meng Q; Zhu Y; Zhang X; Wu W; Yu H
    Technol Health Care; 2023; 31(2):565-578. PubMed ID: 36120745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on Safety and Compliance of a New Lower Limb Rehabilitation Robot.
    Feng Y; Wang H; Yan H; Wang X; Jin Z; Vladareanu L
    J Healthc Eng; 2017; 2017():. PubMed ID: 29068644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human-robot coupling dynamic modeling and analysis for upper limb rehabilitation robots.
    Xie Q; Meng Q; Dai Y; Zeng Q; Fan Y; Yu H
    Technol Health Care; 2021; 29(4):709-723. PubMed ID: 33386832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A rehabilitation robot control framework with adaptation of training tasks and robotic assistance.
    Xu J; Huang K; Zhang T; Cao K; Ji A; Xu L; Li Y
    Front Bioeng Biotechnol; 2023; 11():1244550. PubMed ID: 37849981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a biological signal-based evaluator for robot-assisted upper-limb rehabilitation: a pilot study.
    Sheng B; Tang L; Moosman OM; Deng C; Xie S; Zhang Y
    Australas Phys Eng Sci Med; 2019 Sep; 42(3):789-801. PubMed ID: 31372900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taking a lesson from patients' recovery strategies to optimize training during robot-aided rehabilitation.
    Colombo R; Sterpi I; Mazzone A; Delconte C; Pisano F
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):276-85. PubMed ID: 22623406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Research on mode adjustment control strategy of upper limb rehabilitation robot based on fuzzy recognition of interaction force].
    Li G; Tao L; Meng J; Ye S; Feng G; Zhao D; Hu Y; Tang M; Song T; Fu R; Zuo G; Zhang J; Shi C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2024 Feb; 41(1):90-97. PubMed ID: 38403608
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Neuromuscular Electrical Stimulation (NMES) and robot hybrid system for multi-joint coordinated upper limb rehabilitation after stroke.
    Rong W; Li W; Pang M; Hu J; Wei X; Yang B; Wai H; Zheng X; Hu X
    J Neuroeng Rehabil; 2017 Apr; 14(1):34. PubMed ID: 28446181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Axis Force Sensor for Human-Robot Interaction Sensing in a Rehabilitation Robotic Device.
    Grosu V; Grosu S; Vanderborght B; Lefeber D; Rodriguez-Guerrero C
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complexity analysis of EMG signals for patients after stroke during robot-aided rehabilitation training using fuzzy approximate entropy.
    Sun R; Song R; Tong KY
    IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1013-9. PubMed ID: 24240006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensing pressure distribution on a lower-limb exoskeleton physical human-machine interface.
    De Rossi SM; Vitiello N; Lenzi T; Ronsse R; Koopman B; Persichetti A; Vecchi F; Ijspeert AJ; van der Kooij H; Carrozza MC
    Sensors (Basel); 2011; 11(1):207-27. PubMed ID: 22346574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.